A Comparative Analysis of Neural Network Architectures for Predicting Indian Rice Production

Pal Deka
{"title":"A Comparative Analysis of Neural Network Architectures for Predicting Indian Rice Production","authors":"Pal Deka","doi":"10.9734/acri/2024/v24i5702","DOIUrl":null,"url":null,"abstract":"Rice (Oryza sativa) is one of the most important cereal crops in World and feeds more than a third of the world’s population. In Asian region, rice is a main source of nutrition and provides 30% to 70% of the daily calories for half of the world’s population. Here, in this study two different neural network models were used in prediction of rice production of India. It was observed that the accuracy score of Multi-layer perceptron neural network is better than Radial basis function in prediction of rice production. The loss/error value for Multi-layer perceptron (MLP) model is lower than Radial basis function (RBF) model. The relative error is found to be high for MLP.","PeriodicalId":486386,"journal":{"name":"Archives of current research international","volume":"67 s303","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of current research international","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.9734/acri/2024/v24i5702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rice (Oryza sativa) is one of the most important cereal crops in World and feeds more than a third of the world’s population. In Asian region, rice is a main source of nutrition and provides 30% to 70% of the daily calories for half of the world’s population. Here, in this study two different neural network models were used in prediction of rice production of India. It was observed that the accuracy score of Multi-layer perceptron neural network is better than Radial basis function in prediction of rice production. The loss/error value for Multi-layer perceptron (MLP) model is lower than Radial basis function (RBF) model. The relative error is found to be high for MLP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测印度水稻产量的神经网络架构比较分析
水稻(Oryza sativa)是世界上最重要的谷类作物之一,为世界三分之一以上的人口提供食物。在亚洲地区,水稻是主要的营养来源,为全球一半人口提供 30% 至 70% 的日常热量。本研究使用了两种不同的神经网络模型来预测印度的水稻产量。据观察,在预测水稻产量方面,多层感知器神经网络的准确率优于径向基函数。多层感知器(MLP)模型的损失/误差值低于径向基函数(RBF)模型。MLP 的相对误差较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multidimensional Scaling Method and Some Practical Applications Multidimensional Scaling Method and Some Practical Applications Analysis of Physicochemical Properties of Corn Starch Based Composite Biodegradable Cups Influenced by Ultrasonication Pretreatment of Casting Solutions The Influence of Socio-demographic Variables on Coping Strategies for Stress and Depression among Lecturers in Selected Universities of Ogun State, Nigeria Financial Reporting Revolution: How it Integration Drives Efficiency and Accuracy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1