Combination of NIR and UV‐LEDs Enables Physical and Chemical Drying of Aqueous Coating Dispersions as New Green Technology

Lukas Appelhoff, Nicolas Hornemann, Jochen Schmidt, Anita Krautz, Bernd Strehmel
{"title":"Combination of NIR and UV‐LEDs Enables Physical and Chemical Drying of Aqueous Coating Dispersions as New Green Technology","authors":"Lukas Appelhoff, Nicolas Hornemann, Jochen Schmidt, Anita Krautz, Bernd Strehmel","doi":"10.1002/appl.202400011","DOIUrl":null,"url":null,"abstract":"Heptamethine based cyanines, namely 1,3,‐trimethyl‐2‐(2‐2[2‐phenylsulfanyl‐3‐[2‐(1,3,3‐trimethyl‐1,3,3‐trithyl‐1,3‐dihydro‐indol‐2‐ylidene)‐ethylidene]cyclohex‐1‐enyl]vinyl)‐3H‐indolium chloride (S1) and 2‐[2‐(2‐chloro‐[2‐[1,1‐dimethyl‐7‐sulfo‐3‐(4‐sulfobutyl)‐1,3‐dihydro‐benzo[e]indol‐2‐ylidene]‐ethylidene]cyclopent‐1‐enyl]vinyl]‐1,1‐dimethyl‐7‐sulfo‐3‐(4‐sulfobutyl)‐1Hbenzo[e]indolium hydroxide, inner salt, triethylammonium salt (S2), efficiently result in physical drying of an aqueous dispersion comprising a polyurethane binder. S2 possesses a water solubility of 40 g/L. A high‐intensity NIR‐LED emitting at 820 nm with an intensity of 1 W/cm2 served as light source. The cyanine converted the light absorbed into heat by internal conversion needing less drying time compared to conventional drying. Water content after film formation showed less then 1%. In the second step, UV exposure with a LED emitting at 395 nm resulted in formation of semi‐interpenetrating polymer networks by crosslinking of the multifunctional (meth)acrylate operating as reactive diluent. TPO‐L served as effective UV‐photoinitiator. Furthermore, the UV‐exposure together with Norrish Type I and Type II photoinitator systems results in a very efficient bleaching of the green physical dried film. This contribution shows for the first time a new photonic hybrid technique describing successful replacement of an oven‐based process by a photonic based step that generates heat needed for drying.This article is protected by copyright. All rights reserved.","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1002/appl.202400011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heptamethine based cyanines, namely 1,3,‐trimethyl‐2‐(2‐2[2‐phenylsulfanyl‐3‐[2‐(1,3,3‐trimethyl‐1,3,3‐trithyl‐1,3‐dihydro‐indol‐2‐ylidene)‐ethylidene]cyclohex‐1‐enyl]vinyl)‐3H‐indolium chloride (S1) and 2‐[2‐(2‐chloro‐[2‐[1,1‐dimethyl‐7‐sulfo‐3‐(4‐sulfobutyl)‐1,3‐dihydro‐benzo[e]indol‐2‐ylidene]‐ethylidene]cyclopent‐1‐enyl]vinyl]‐1,1‐dimethyl‐7‐sulfo‐3‐(4‐sulfobutyl)‐1Hbenzo[e]indolium hydroxide, inner salt, triethylammonium salt (S2), efficiently result in physical drying of an aqueous dispersion comprising a polyurethane binder. S2 possesses a water solubility of 40 g/L. A high‐intensity NIR‐LED emitting at 820 nm with an intensity of 1 W/cm2 served as light source. The cyanine converted the light absorbed into heat by internal conversion needing less drying time compared to conventional drying. Water content after film formation showed less then 1%. In the second step, UV exposure with a LED emitting at 395 nm resulted in formation of semi‐interpenetrating polymer networks by crosslinking of the multifunctional (meth)acrylate operating as reactive diluent. TPO‐L served as effective UV‐photoinitiator. Furthermore, the UV‐exposure together with Norrish Type I and Type II photoinitator systems results in a very efficient bleaching of the green physical dried film. This contribution shows for the first time a new photonic hybrid technique describing successful replacement of an oven‐based process by a photonic based step that generates heat needed for drying.This article is protected by copyright. All rights reserved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近红外和紫外 LED 的结合使水性涂料分散体的物理和化学干燥成为新的绿色技术
七亚胺基氰基,即 1,3,-三甲基-2-(2-2-[2-苯硫基-3-[2-(1,3,3-三甲基-1,3,3-三乙基-1,3-二氢-吲哚-2-亚基)-亚乙基]环己-1-烯基]乙烯基)-3H-吲哚鎓氯化物(S1)和 2-[2-(2-氯-[2-[1,1-二甲基-7-磺酸基-3-(4-磺酸基丁基)-1、2-(2-氯-[2-[1,1-二甲基-7-磺酸基-3-(4-磺酸基丁基)-1,3-二氢-苯并[e]吲哚-2-亚基]-亚乙基]环戊-1-烯基]乙烯基]-1,1-二甲基-7-磺酸基-3-(4-磺酸基丁基)-1H 苯并[e]吲哚鎓氢氧化物,内盐,三乙基铵盐(S2)能有效地使包含聚氨酯粘合剂的水性分散体物理干燥。S2 的水溶性为 40 克/升。820 纳米波长、强度为 1 W/cm2 的高强度近红外发光二极管用作光源。与传统的干燥方法相比,氰基通过内部转换将吸收的光能转化为热能,所需的干燥时间更短。成膜后的含水量低于 1%。第二步,用波长为 395 nm 的 LED 进行紫外线照射,通过交联作为活性稀释剂的多功能(甲基)丙烯酸酯,形成半互穿聚合物网络。TPO-L 可作为有效的紫外线光引发剂。此外,紫外线照射与 Norrish I 型和 II 型光引发剂系统一起使用,可对绿色物理干燥薄膜进行高效漂白。本文首次展示了一种新的光子混合技术,描述了用光子步骤成功取代烘箱工艺,产生干燥所需的热量。本文受版权保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
Cover Image: Volume 3 Issue 4 Comparative study of pure and mixed phase sulfurized‐carbon black in battery cathodes for lithium sulfur batteries Electrical cell‐substrate impedance sensing (ECIS) in lung biology and disease Xanthan gum modification to surface and interfacial properties between soil‐based matrixes and petroleum oils to minimize soil pollution Advanced, high‐performance thermo‐insulating plaster
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1