Coupled Mode Design of Low-Loss Electromechanical Phase Shifters

Micro Pub Date : 2024-05-06 DOI:10.3390/micro4020021
Nathnael S. Abebe, Sunil Pai, Rebecca L. Hwang, P. Broaddus, Yu Miao, Olav Solgaard
{"title":"Coupled Mode Design of Low-Loss Electromechanical Phase Shifters","authors":"Nathnael S. Abebe, Sunil Pai, Rebecca L. Hwang, P. Broaddus, Yu Miao, Olav Solgaard","doi":"10.3390/micro4020021","DOIUrl":null,"url":null,"abstract":"Micro-electromechanical systems (MEMS) have the potential to provide low-power phase shifting in silicon photonics, but techniques for designing low-loss devices are necessary for adoption of the technology. Based on coupled mode theory (CMT), we derive analytical expressions relating the loss and, in particular, the phase-dependent loss, to the geometry of the MEMS phase shifters. The analytical model explains the loss mechanisms of MEMS phase shifters and enables simple optimization procedures. Based on that insight, we propose phase shifter geometries that minimize coupling power out of the waveguide. Minimization of the loss is based on mode orthogonality of a waveguide and phase shifter modes. We numerically model such geometries for a silicon nitride MEMS phase shifter over a silicon nitride waveguide, predicting less than −1.08 dB loss over a 2π range and −0.026 dB loss when optimized for a π range. We demonstrate this design framework with a custom silicon nitride process and achieve −0.48 dB insertion loss and less than 0.05 dB transmission variation over a π phase shift. Our work demonstrates the strength of the coupled mode approach for the design and optimization of MEMS phase shifters.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"346 2‐3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/micro4020021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Micro-electromechanical systems (MEMS) have the potential to provide low-power phase shifting in silicon photonics, but techniques for designing low-loss devices are necessary for adoption of the technology. Based on coupled mode theory (CMT), we derive analytical expressions relating the loss and, in particular, the phase-dependent loss, to the geometry of the MEMS phase shifters. The analytical model explains the loss mechanisms of MEMS phase shifters and enables simple optimization procedures. Based on that insight, we propose phase shifter geometries that minimize coupling power out of the waveguide. Minimization of the loss is based on mode orthogonality of a waveguide and phase shifter modes. We numerically model such geometries for a silicon nitride MEMS phase shifter over a silicon nitride waveguide, predicting less than −1.08 dB loss over a 2π range and −0.026 dB loss when optimized for a π range. We demonstrate this design framework with a custom silicon nitride process and achieve −0.48 dB insertion loss and less than 0.05 dB transmission variation over a π phase shift. Our work demonstrates the strength of the coupled mode approach for the design and optimization of MEMS phase shifters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低损耗机电移相器的耦合模式设计
微机电系统(MEMS)具有在硅光子学中提供低功耗移相的潜力,但设计低损耗器件的技术是采用该技术的必要条件。基于耦合模式理论 (CMT),我们推导出了与 MEMS 移相器几何形状相关的损耗分析表达式,特别是与相位相关的损耗。分析模型解释了 MEMS 移相器的损耗机制,并实现了简单的优化程序。在此基础上,我们提出了移相器的几何结构,使波导外的耦合功率最小。损耗最小化基于波导和移相器模式的正交性。我们对氮化硅波导上的氮化硅 MEMS 移相器的这种几何形状进行了数值建模,预测在 2π 范围内的损耗小于 -1.08 dB,在 π 范围内优化后的损耗为 -0.026 dB。我们利用定制氮化硅工艺演示了这一设计框架,并在 π 相移范围内实现了 -0.48 dB 的插入损耗和小于 0.05 dB 的传输变化。我们的工作证明了耦合模式方法在设计和优化 MEMS 移相器方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Microstructure Patterns: Influence on Hydrophobic Properties of 3D-Printed Surfaces Optical and Morphological Characterization of Nanoscale Oxides Grown in Low-Energy H+-Implanted c-Silicon Extending Polymer Opal Structural Color Properties into the Near-Infrared Implementation of Numerical Model for Prediction of Temperature Distribution for Metallic-Coated Firefighter Protective Clothing A Microfluidic Paper-Based Lateral Flow Device for Quantitative ELISA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1