Design of a metal additive manufactured aircraft seat leg using topology optimization and part decomposition

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-06 DOI:10.1108/rpj-11-2023-0400
Hansu Kim, Luke Crispo, Anuj Patel, Nicholas Galley, S. Yeon, Yong Son, Il Yong Kim
{"title":"Design of a metal additive manufactured aircraft seat leg using topology optimization and part decomposition","authors":"Hansu Kim, Luke Crispo, Anuj Patel, Nicholas Galley, S. Yeon, Yong Son, Il Yong Kim","doi":"10.1108/rpj-11-2023-0400","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight topology-optimized designs with improved performance, but limited build volume restricts the printing of large components. The purpose of this paper is to design a lightweight aircraft seat leg structure using topology optimization (TO) and MAM with build volume restrictions, while satisfying structural airworthiness certification requirements.\n\n\nDesign/methodology/approach\nTO was used to determine a lightweight conceptual design for the seat leg structure. The conceptual design was decomposed to meet the machine build volume, a detailed CAD assembly was designed and print orientation was selected for each component. Static and dynamic verification was performed, the design was updated to meet the structural requirements and a prototype was manufactured.\n\n\nFindings\nThe final topology-optimized seat leg structure was decomposed into three parts, yielding a 57% reduction in the number of parts compared to a reference design. In addition, the design achieved an 8.5% mass reduction while satisfying structural requirements for airworthiness certification.\n\n\nOriginality/value\nTo the best of the authors’ knowledge, this study is the first paper to design an aircraft seat leg structure manufactured with MAM using a rigorous TO approach. The resultant design reduces mass and part count compared to a reference design and is verified with respect to real-world aircraft certification requirements.\n","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"318 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/rpj-11-2023-0400","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight topology-optimized designs with improved performance, but limited build volume restricts the printing of large components. The purpose of this paper is to design a lightweight aircraft seat leg structure using topology optimization (TO) and MAM with build volume restrictions, while satisfying structural airworthiness certification requirements. Design/methodology/approach TO was used to determine a lightweight conceptual design for the seat leg structure. The conceptual design was decomposed to meet the machine build volume, a detailed CAD assembly was designed and print orientation was selected for each component. Static and dynamic verification was performed, the design was updated to meet the structural requirements and a prototype was manufactured. Findings The final topology-optimized seat leg structure was decomposed into three parts, yielding a 57% reduction in the number of parts compared to a reference design. In addition, the design achieved an 8.5% mass reduction while satisfying structural requirements for airworthiness certification. Originality/value To the best of the authors’ knowledge, this study is the first paper to design an aircraft seat leg structure manufactured with MAM using a rigorous TO approach. The resultant design reduces mass and part count compared to a reference design and is verified with respect to real-world aircraft certification requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用拓扑优化和部件分解设计金属添加剂制造的飞机座椅腿
目的飞机座椅的轻量化设计可显著提高燃油效率并减少温室气体排放。金属增材制造(MAM)可以生产出拓扑优化的轻质设计并提高性能,但有限的制造体积限制了大型部件的打印。本文的目的是利用拓扑优化(TO)和 MAM,在满足结构适航认证要求的前提下,设计一种轻质飞机座椅腿结构。对概念设计进行了分解,以满足机器的制造体积,设计了详细的 CAD 装配,并为每个组件选择了打印方向。进行了静态和动态验证,更新了设计以满足结构要求,并制造了一个原型。此外,该设计在满足适航认证结构要求的同时,还减少了 8.5% 的质量。原创性/价值 据作者所知,本研究是第一篇采用严格的 TO 方法设计飞机座椅腿结构的论文。与参考设计相比,该设计减少了质量和零件数量,并根据实际飞机认证要求进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
Corroborating the Monro-Kellie Principles. Issue Publication Information Issue Editorial Masthead Near-Infrared Organic Light-Dependent Resistor Based on Naphthalocyanine Ultrahigh Photocurrent in a Self-Powered Deep Ultraviolet Photodetector via P+/P/N-β-Ga2O3 Heterojunction and Patterned Top-Electrode Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1