danRerLib: a python package for zebrafish transcriptomics

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-05-06 DOI:10.1093/bioadv/vbae065
Ashley V. Schwartz, Karilyn E. Sant, Uduak Z. George
{"title":"danRerLib: a python package for zebrafish transcriptomics","authors":"Ashley V. Schwartz, Karilyn E. Sant, Uduak Z. George","doi":"10.1093/bioadv/vbae065","DOIUrl":null,"url":null,"abstract":"\n \n \n Understanding the pathways and biological processes underlying differential gene expression is fundamental for characterizing gene expression changes in response to an experimental condition. Zebrafish, with a transcriptome closely mirroring that of humans, are frequently utilized as a model for human development and disease. However, a challenge arises due to the incomplete annotations of zebrafish pathways and biological processes, with more comprehensive annotations existing in humans. This incompleteness may result in biased functional enrichment findings and loss of knowledge. danRerLib, a versatile Python package for zebrafish transcriptomics researchers, overcomes this challenge and provides a suite of tools to be executed in Python including gene ID mapping, orthology mapping for the zebrafish and human taxonomy, and functional enrichment analysis utilizing the latest updated Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. danRerLib enables functional enrichment analysis for GO and KEGG pathways, even when they lack direct zebrafish annotations through the orthology of human-annotated functional annotations. This approach enables researchers to extend their analysis to a wider range of pathways, elucidating additional mechanisms of interest and greater insight into experimental results.\n \n \n \n danRerLib, along with comprehensive documentation and tutorials, is freely available. The source code is available at https://github.com/sdsucomptox/danrerlib/ with associated documentation and tutorials at https://sdsucomptox.github.io/danrerlib/. The package has been developed with Python 3.9 and is available for installation on the package management systems PIP (https://pypi.org/project/danrerlib/) and Conda (https://anaconda.org/sdsu_comptox/danrerlib) with additional installation instructions on the documentation website.\n","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the pathways and biological processes underlying differential gene expression is fundamental for characterizing gene expression changes in response to an experimental condition. Zebrafish, with a transcriptome closely mirroring that of humans, are frequently utilized as a model for human development and disease. However, a challenge arises due to the incomplete annotations of zebrafish pathways and biological processes, with more comprehensive annotations existing in humans. This incompleteness may result in biased functional enrichment findings and loss of knowledge. danRerLib, a versatile Python package for zebrafish transcriptomics researchers, overcomes this challenge and provides a suite of tools to be executed in Python including gene ID mapping, orthology mapping for the zebrafish and human taxonomy, and functional enrichment analysis utilizing the latest updated Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. danRerLib enables functional enrichment analysis for GO and KEGG pathways, even when they lack direct zebrafish annotations through the orthology of human-annotated functional annotations. This approach enables researchers to extend their analysis to a wider range of pathways, elucidating additional mechanisms of interest and greater insight into experimental results. danRerLib, along with comprehensive documentation and tutorials, is freely available. The source code is available at https://github.com/sdsucomptox/danrerlib/ with associated documentation and tutorials at https://sdsucomptox.github.io/danrerlib/. The package has been developed with Python 3.9 and is available for installation on the package management systems PIP (https://pypi.org/project/danrerlib/) and Conda (https://anaconda.org/sdsu_comptox/danrerlib) with additional installation instructions on the documentation website.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
danRerLib:斑马鱼转录组学 python 软件包
了解不同基因表达的途径和生物过程是描述基因表达对实验条件反应变化的基础。斑马鱼的转录组与人类非常相似,经常被用作人类发育和疾病的模型。然而,由于斑马鱼通路和生物过程的注释不完整,而人类的注释更为全面,这就带来了挑战。danRerLib 是一款为斑马鱼转录组学研究人员设计的通用 Python 软件包,它克服了这一难题,提供了一套可在 Python 中执行的工具,包括基因 ID 映射、斑马鱼和人类分类法的正交映射,以及利用最新更新的基因本体(GO)和京都基因组百科全书(KEGG)数据库进行功能富集分析。danRerLib 通过对人类注释的功能注释进行正交,即使缺乏直接的斑马鱼注释,也能对 GO 和 KEGG 途径进行功能富集分析。danRerLib 以及全面的文档和教程可免费获取。源代码见 https://github.com/sdsucomptox/danrerlib/,相关文档和教程见 https://sdsucomptox.github.io/danrerlib/。该软件包使用 Python 3.9 开发,可在软件包管理系统 PIP (https://pypi.org/project/danrerlib/) 和 Conda (https://anaconda.org/sdsu_comptox/danrerlib) 上安装,其他安装说明可在文档网站上查阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
motifbreakR v2: expanded variant analysis including indels and integrated evidence from transcription factor binding databases. TransAnnot-a fast transcriptome annotation pipeline. PatchProt: hydrophobic patch prediction using protein foundation models. Accelerating protein-protein interaction screens with reduced AlphaFold-Multimer sampling. CAPTVRED: an automated pipeline for viral tracking and discovery from capture-based metagenomics samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1