{"title":"A mechanistic deterioration point assignment model for water pipe condition assessment","authors":"Ziyi Zhu, Chenwan Wang, Yijie Feng, Jialun Xie","doi":"10.2166/aqua.2024.077","DOIUrl":null,"url":null,"abstract":"\n \n A pipe condition assessment model is required to implement effective and economical planned maintenance of the water distribution system. The application of such a model requires sufficient accuracy, which, however, is limited by the complexity of the pipe deterioration process and storage capacity of the water utility. The majority of previous studies have focused on the improvement of assessment algorithms for data mining. In this study, a mechanistic deterioration point assignment (MDPA) model is developed to make advancements in the modes of data input and result output to enhance the model's accuracy and application scope for cast iron and steel pipes. In this MDPA model, (1) indicators/sub-indicators on external corrosion, external load, internal corrosion, and internal load are constructed and can be obtained by data estimation or techniques and (2) assessment results include both pipe overall condition and detailed conditions on pipe corrosion and load, offering evidence for primary maintenance measures. The weights of the indicators/sub-indicators are estimated using the Bayesian statistics theory. The modelling results of pipe samples demonstrate that this MDPA model is an effective tool for pipe condition assessment.","PeriodicalId":513288,"journal":{"name":"AQUA — Water Infrastructure, Ecosystems and Society","volume":"7 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AQUA — Water Infrastructure, Ecosystems and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2024.077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A pipe condition assessment model is required to implement effective and economical planned maintenance of the water distribution system. The application of such a model requires sufficient accuracy, which, however, is limited by the complexity of the pipe deterioration process and storage capacity of the water utility. The majority of previous studies have focused on the improvement of assessment algorithms for data mining. In this study, a mechanistic deterioration point assignment (MDPA) model is developed to make advancements in the modes of data input and result output to enhance the model's accuracy and application scope for cast iron and steel pipes. In this MDPA model, (1) indicators/sub-indicators on external corrosion, external load, internal corrosion, and internal load are constructed and can be obtained by data estimation or techniques and (2) assessment results include both pipe overall condition and detailed conditions on pipe corrosion and load, offering evidence for primary maintenance measures. The weights of the indicators/sub-indicators are estimated using the Bayesian statistics theory. The modelling results of pipe samples demonstrate that this MDPA model is an effective tool for pipe condition assessment.