Deteksi Cyberbullying Menggunakan BERT dan Bi-LSTM

Fidya Farasalsabila, Ema Utami, H. Hanafi
{"title":"Deteksi Cyberbullying Menggunakan BERT dan Bi-LSTM","authors":"Fidya Farasalsabila, Ema Utami, H. Hanafi","doi":"10.34151/jurtek.v17i1.4636","DOIUrl":null,"url":null,"abstract":"Cyberbullying is a digital problem that is not a new phenomenon. This existed before the advent of social networks, and cyberbullying has a wide impact, including a person's mental and physiological conditions such as sadness, anxiety and depression. The main objective of this research is to develop an effective cyberbullying detection system using natural language processing techniques. The method used in this research includes the application of the BERT (Bi-Directional Encoder Representations from Transformers) and Bi-LSTM (Bi-Directional Long Short-Term Memory) models as a deep learning approach to analyze text and detect cyberbullying behavior. This approach allows the system to understand complex language contexts and capture patterns that traditional methods may find difficult to identify. Testing was carried out using a dataset that included various types of Indonesian language texts containing cyber bullying acts. The research results show that the combination of BERT and Bi-LSTM is able to provide superior detection performance with a high accuracy rate of 90% and the ability to identify variations of cyber bullying. This research makes a significant contribution to efforts to protect individuals from the negative impacts of cyber bullying through the development of a sophisticated and adaptive detection system.","PeriodicalId":55763,"journal":{"name":"Jurnal Teknologi","volume":"39 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34151/jurtek.v17i1.4636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cyberbullying is a digital problem that is not a new phenomenon. This existed before the advent of social networks, and cyberbullying has a wide impact, including a person's mental and physiological conditions such as sadness, anxiety and depression. The main objective of this research is to develop an effective cyberbullying detection system using natural language processing techniques. The method used in this research includes the application of the BERT (Bi-Directional Encoder Representations from Transformers) and Bi-LSTM (Bi-Directional Long Short-Term Memory) models as a deep learning approach to analyze text and detect cyberbullying behavior. This approach allows the system to understand complex language contexts and capture patterns that traditional methods may find difficult to identify. Testing was carried out using a dataset that included various types of Indonesian language texts containing cyber bullying acts. The research results show that the combination of BERT and Bi-LSTM is able to provide superior detection performance with a high accuracy rate of 90% and the ability to identify variations of cyber bullying. This research makes a significant contribution to efforts to protect individuals from the negative impacts of cyber bullying through the development of a sophisticated and adaptive detection system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 BERT 和 Bi-LSTM 检测网络欺凌
网络欺凌是一个数字问题,并非新现象。这种现象在社交网络出现之前就已经存在,网络欺凌的影响范围很广,包括一个人的精神和生理状况,如悲伤、焦虑和抑郁。本研究的主要目的是利用自然语言处理技术开发一种有效的网络欺凌检测系统。本研究采用的方法包括应用 BERT(来自变压器的双向编码器表征)和 Bi-LSTM(双向长短时记忆)模型作为深度学习方法来分析文本和检测网络欺凌行为。这种方法使系统能够理解复杂的语言上下文,并捕捉传统方法难以识别的模式。测试使用了一个数据集,其中包括包含网络欺凌行为的各类印尼语文本。研究结果表明,BERT 和 Bi-LSTM 的组合能够提供卓越的检测性能,准确率高达 90%,并且能够识别网络欺凌的各种变化。这项研究通过开发先进的自适应检测系统,为保护个人免受网络欺凌的负面影响做出了重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
期刊最新文献
Pemodelan Identifikasi Objek Kendaraan Bermotor Menggunakan Faster Region based Convolutional Neural Network (R-CNN) Berbasis Python Pemanfaatan Mikrotik RB942-2ND Menggunakan Metode Firewall Filtering Untuk Keamanan Jaringan Dengan Model Forensikk Battle Royale Console Game Performance Analysis (Case Study: East Jakarta, Indonesia) Pengaruh Suhu Evaporasi-Kristalisasi dan Persentase Gula Batu terhadap Warna Produk Serbuk Jahe Merah (Zingiber officinale) Penyisihan Kandungan Perak dalam Limbah Cair Pencucian Film Melalui Proses Biofiltrasi dengan Tanaman Eceng Gondok
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1