Design of tile shaped coil structure for wireless power transmission for underwater vehicle

Xiaotong Chen, Kun Li, Qing Liu, Zheng Gong
{"title":"Design of tile shaped coil structure for wireless power transmission for underwater vehicle","authors":"Xiaotong Chen, Kun Li, Qing Liu, Zheng Gong","doi":"10.1177/00202940241226590","DOIUrl":null,"url":null,"abstract":"A pair of tile-shaped transmitting and receiving coils, which is suitable for wireless power transfer system of autonomous underwater vehicle (AUV), is proposed in this paper. Both coils are designed as the tile shape to fit the AUV’s outer shell. And the transmitting coil which is located on the dock is a little larger than the receiving coil that is embedded in the UAV. With the HFSS software, the proposed coil shape was optimized. The performance of the coils was analyzed. By adjusting the coil offset distance and angle. the positioning relationship between the two coils was optimized. A serial-serial compensation topology was established, and an appropriate capacitor was selected to construct the WPT system. The experimental results verified the correctness of the theoretical analysis. The output power reached 30 W and the transmission efficiency reached 68.5%.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940241226590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A pair of tile-shaped transmitting and receiving coils, which is suitable for wireless power transfer system of autonomous underwater vehicle (AUV), is proposed in this paper. Both coils are designed as the tile shape to fit the AUV’s outer shell. And the transmitting coil which is located on the dock is a little larger than the receiving coil that is embedded in the UAV. With the HFSS software, the proposed coil shape was optimized. The performance of the coils was analyzed. By adjusting the coil offset distance and angle. the positioning relationship between the two coils was optimized. A serial-serial compensation topology was established, and an appropriate capacitor was selected to construct the WPT system. The experimental results verified the correctness of the theoretical analysis. The output power reached 30 W and the transmission efficiency reached 68.5%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计用于水下航行器无线输电的瓦形线圈结构
本文提出了一对瓦形发射和接收线圈,适用于自主潜水器(AUV)的无线电力传输系统。两个线圈都设计成瓦片形状,以适合 AUV 的外壳。位于船坞上的发射线圈比嵌入无人潜航器的接收线圈稍大一些。利用 HFSS 软件,对提出的线圈形状进行了优化。对线圈的性能进行了分析。通过调整线圈偏移距离和角度,优化了两个线圈之间的定位关系。建立了串行-串行补偿拓扑结构,并选择了合适的电容器来构建 WPT 系统。实验结果验证了理论分析的正确性。输出功率达到 30 W,传输效率达到 68.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Train timetable and stopping plan generation based on cross-line passenger flow in high-speed railway network Enhancing water pressure sensing in challenging environments: A strain gage technology integrated with deep learning approach Photovoltaic MPPT control and improvement strategies considering environmental factors: based on PID-type sliding mode control and improved grey wolf optimization Tracking controller design for quadrotor UAVs under external disturbances using a high-order sliding mode-assisted disturbance observer Evaluating vehicle trafficability on soft ground using wheel force information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1