Innovative Heat Transfer Enhancement in Tubular Heat Exchanger: An Experimental Investigation with Minijet Impingement

Shital Yashwant Waware, Sandeep Sadashiv, A. Kurhade, Suhas Prakashrao Patil
{"title":"Innovative Heat Transfer Enhancement in Tubular Heat Exchanger: An Experimental Investigation with Minijet Impingement","authors":"Shital Yashwant Waware, Sandeep Sadashiv, A. Kurhade, Suhas Prakashrao Patil","doi":"10.37934/arfmts.116.2.5158","DOIUrl":null,"url":null,"abstract":"This paper investigates heat transfer in a horizontally oriented tubular heat exchanger through a comprehensive examination of both numerical simulations and experimental analyses. The primary focus is on copper as the material of interest, specifically examining an inner tube with a 14 mm internal diameter and 1 mm thickness, as well as an outer tube with a 29 mm external diameter and 1 mm thickness. In addition to these components, two perforated pipes with internal diameters of 11 mm and 20 mm are incorporated; contributing to an overall length of the heat exchanger measuring 281 mm. Notably, the perforation pipe features a 5 mm diameter hole on its periphery. A comprehensive assessment was conducted to appraise heat transfer and coefficients within a straightforward tubular heat exchanger. The mass flow rate of chilled water in the annular space fluctuated between 0.01 kg/sec and 0.11 kg/sec, while the steady flow rate of hot water within the inner tube remained constant at 0.11 kg/sec. Inlet temperatures for the hot water were established at 55 °C, 75 °C, and 85 °C, with the cold water maintaining a consistent inlet temperature of 29 °C throughout the experiment.","PeriodicalId":37460,"journal":{"name":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","volume":"8 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/arfmts.116.2.5158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates heat transfer in a horizontally oriented tubular heat exchanger through a comprehensive examination of both numerical simulations and experimental analyses. The primary focus is on copper as the material of interest, specifically examining an inner tube with a 14 mm internal diameter and 1 mm thickness, as well as an outer tube with a 29 mm external diameter and 1 mm thickness. In addition to these components, two perforated pipes with internal diameters of 11 mm and 20 mm are incorporated; contributing to an overall length of the heat exchanger measuring 281 mm. Notably, the perforation pipe features a 5 mm diameter hole on its periphery. A comprehensive assessment was conducted to appraise heat transfer and coefficients within a straightforward tubular heat exchanger. The mass flow rate of chilled water in the annular space fluctuated between 0.01 kg/sec and 0.11 kg/sec, while the steady flow rate of hot water within the inner tube remained constant at 0.11 kg/sec. Inlet temperatures for the hot water were established at 55 °C, 75 °C, and 85 °C, with the cold water maintaining a consistent inlet temperature of 29 °C throughout the experiment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
管式热交换器中的创新传热增强技术:利用微型射流冲击的实验研究
本文通过对数值模拟和实验分析的综合研究,探讨了水平方向管式热交换器的传热问题。主要研究对象是铜材料,特别是研究内径为 14 毫米、厚度为 1 毫米的内管,以及外径为 29 毫米、厚度为 1 毫米的外管。除这些组件外,还包括两根内径分别为 11 毫米和 20 毫米的穿孔管,使热交换器的总长度达到 281 毫米。值得注意的是,穿孔管的外围有一个直径为 5 毫米的孔。为了评估直管式热交换器的传热和系数,我们进行了一项综合评估。环形空间中冷水的质量流量在 0.01 千克/秒和 0.11 千克/秒之间波动,而内管中热水的稳定流速则保持在 0.11 千克/秒。热水的入口温度分别为 55 °C、75 °C 和 85 °C,冷水的入口温度在整个实验过程中始终保持在 29 °C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
2.40
自引率
0.00%
发文量
176
期刊介绍: This journal welcomes high-quality original contributions on experimental, computational, and physical aspects of fluid mechanics and thermal sciences relevant to engineering or the environment, multiphase and microscale flows, microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
Synchronous Heat and Mass Transmission in MHD Ohmic Dissipative Viscous Fluid Flow Cavorted by an Upright Surface with Chemical Reaction Energy and Exergy Analysis of R600a as a Substitute for R134a in Automotive Air Conditioning System Exploration of Timber Dry and Wet Rot Defects in Buildings: Types, Causes, Effects and Mitigation Methods Investigating the Effects of Air Bubbles Injection Technique on the Cooling Time of Warm Drinking Water Preparation of TFC-PES Reverse Osmosis Hollow Fibre Membrane for Brackish Water Desalination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1