Inference Analysis of Video Quality of Experience in Relation with Face Emotion, Video Advertisement, and ITU-T P.1203

Tisa Selma, M. M. Masud, A. Bentaleb, Saad Harous
{"title":"Inference Analysis of Video Quality of Experience in Relation with Face Emotion, Video Advertisement, and ITU-T P.1203","authors":"Tisa Selma, M. M. Masud, A. Bentaleb, Saad Harous","doi":"10.3390/technologies12050062","DOIUrl":null,"url":null,"abstract":"This study introduces an FER-based machine learning framework for real-time QoE assessment in video streaming. This study’s aim is to address the challenges posed by end-to-end encryption and video advertisement while enhancing user QoE. Our proposed framework significantly outperforms the base reference, ITU-T P.1203, by up to 37.1% in terms of accuracy and 21.74% after attribute selection. Our study contributes to the field in two ways. First, we offer a promising solution to enhance user satisfaction in video streaming services via real-time user emotion and user feedback integration, providing a more holistic understanding of user experience. Second, high-quality data collection and insights are offered by collecting real data from diverse regions to minimize any potential biases and provide advertisement placement suggestions.","PeriodicalId":22341,"journal":{"name":"Technologies","volume":"93 S1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/technologies12050062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an FER-based machine learning framework for real-time QoE assessment in video streaming. This study’s aim is to address the challenges posed by end-to-end encryption and video advertisement while enhancing user QoE. Our proposed framework significantly outperforms the base reference, ITU-T P.1203, by up to 37.1% in terms of accuracy and 21.74% after attribute selection. Our study contributes to the field in two ways. First, we offer a promising solution to enhance user satisfaction in video streaming services via real-time user emotion and user feedback integration, providing a more holistic understanding of user experience. Second, high-quality data collection and insights are offered by collecting real data from diverse regions to minimize any potential biases and provide advertisement placement suggestions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视频体验质量与面部情绪、视频广告和 ITU-T P.1203 的关系推理分析
本研究介绍了一种基于 FER 的机器学习框架,用于视频流中的实时 QoE 评估。这项研究旨在解决端到端加密和视频广告带来的挑战,同时提高用户 QoE。我们提出的框架在准确性方面明显优于基础参考文献 ITU-T P.1203,准确率高达 37.1%,在属性选择后为 21.74%。我们的研究在两个方面为该领域做出了贡献。首先,我们提供了一种有前途的解决方案,通过实时用户情感和用户反馈整合,提供对用户体验更全面的理解,从而提高视频流服务的用户满意度。其次,通过收集来自不同地区的真实数据,我们提供了高质量的数据收集和见解,从而最大限度地减少了任何潜在的偏差,并提供了广告投放建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technology in Forensic Sciences: Innovation and Precision Enhanced Energy Transfer Efficiency for IoT-Enabled Cyber-Physical Systems in 6G Edge Networks with WPT-MIMO-NOMA Development of a Body Weight Support System Employing Model-Based System Engineering Methodology Nano-Level Additive Manufacturing: Condensed Review of Processes, Materials, and Industrial Applications Development of a New Prototype Paediatric Central Sleep Apnoea Monitor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1