Diah Agustina Puspitasari, S. Supriyono, C. W. Kartikowati, Mar'atul Fauziyah, F. Gapsari, Vania Mitha Pratiwi, Devina Annora H Br Butar-Butar, Ira Marisa D.N, Rashieka Putri Maghfiroh, Yudha Bhakti Prasetia, Rivanda Adi I. R, Irginata Aqil H, Roihan Rajabi, Umar Khalid Zaki Abdul
{"title":"Synthesis and Characterization of Na2/3[Fe1/2Mn1/2]O2 Cathode Material for Sodium Ion Batteries","authors":"Diah Agustina Puspitasari, S. Supriyono, C. W. Kartikowati, Mar'atul Fauziyah, F. Gapsari, Vania Mitha Pratiwi, Devina Annora H Br Butar-Butar, Ira Marisa D.N, Rashieka Putri Maghfiroh, Yudha Bhakti Prasetia, Rivanda Adi I. R, Irginata Aqil H, Roihan Rajabi, Umar Khalid Zaki Abdul","doi":"10.20961/equilibrium.v8i1.80464","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract. </strong>Recently,<strong> </strong>Na<sub>2/3</sub>[Fe<sub>1/2</sub>Mn<sub>1/2</sub>]O<sub>2</sub> has received attention as a potential candidate material for cathode sodium-ion batteries. However, this material was synthesized by a solid-state process, resulting in larger particle size and nonuniform morphology. The larger particle size will sluggish the Na ion diffusion. Here we report the synthesis of Na<sub>2/3</sub>[Fe<sub>1/2</sub>Mn<sub>1/2</sub>]O<sub>2</sub> using a simple sol-gel process. The X-ray diffraction revealed that the sample was identified as Na<sub>2/3</sub>[Fe<sub>1/2</sub>Mn<sub>1/2</sub>]O<sub>2</sub> with a hexagonal crystal structure. However, the impurities are formed at diffraction angles of 36.28°, 45.03°, and 51.23°. Calcination temperature affects the formation of the crystal phase, grain growth, morphology, and particle size. Our findings provide valuable insight into the development of Na<sub>2/3</sub>[Fe<sub>1/2</sub>Mn<sub>1/2</sub>]O<sub>2</sub> material with desirable properties.</p><p> </p><p><strong>Keywords:</strong></p><p>Sol-Gel, Solid State, Grain Growth, Calcination, Na<sub>2/3</sub>[Fe<sub>1/2</sub>Mn<sub>1/2</sub>]O<sub>2</sub></p><p> </p>","PeriodicalId":11866,"journal":{"name":"Equilibrium Journal of Chemical Engineering","volume":"96 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Equilibrium Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20961/equilibrium.v8i1.80464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Recently,Na2/3[Fe1/2Mn1/2]O2 has received attention as a potential candidate material for cathode sodium-ion batteries. However, this material was synthesized by a solid-state process, resulting in larger particle size and nonuniform morphology. The larger particle size will sluggish the Na ion diffusion. Here we report the synthesis of Na2/3[Fe1/2Mn1/2]O2 using a simple sol-gel process. The X-ray diffraction revealed that the sample was identified as Na2/3[Fe1/2Mn1/2]O2 with a hexagonal crystal structure. However, the impurities are formed at diffraction angles of 36.28°, 45.03°, and 51.23°. Calcination temperature affects the formation of the crystal phase, grain growth, morphology, and particle size. Our findings provide valuable insight into the development of Na2/3[Fe1/2Mn1/2]O2 material with desirable properties.