{"title":"A High-Precision Monitoring Method Based on SVM Regression for Multivariate Quantitative Analysis of PID Response to VOC Signals","authors":"Xiujuan Feng, Zengyuan Liu, Yongjun Ren, Chengliang Dong","doi":"10.3390/chemosensors12050074","DOIUrl":null,"url":null,"abstract":"In the moist environment of soil-water-air, there is a problem of low accuracy in monitoring volatile organic compounds (VOCs) using a photoionization detector (PID). This study is based on the PID water-soil-gas VOC online monitor developed by this group, online monitoring of the concentration of different constituents of VOCs in different production enterprises of the petroleum and chemical industries in Shandong Province, with the concentration of the laboratory test, to build a relevant model. The correlation coefficient about the PID test concentration and the actual concentration correlation coefficient was obtained through the collection of a large number of data trainings. Based on the application of PID in VOC monitoring, the establishment of a PID high-precision calibration model is important for the precise monitoring of VOCs. In this paper, multiple quantitative analyses were conducted, based on SVM regression of PID response to VOC signals, to study the high-precision VOC monitoring method. To select the response signals of PID under different concentrations of environmental VOCs measured by the research group, first, the PID response to VOC signals was modeled using the support vector machine principle to verify the effect of traditional SVM regression. For the problem of raw data redundancy, calculate the time-domain and frequency-domain characteristics of the PID signal, and conduct the principal component analysis of the time-domain of the PID signal. In order to make the SVM regression more generalized and robust, the selection of kernel function parameters and penalty factor of SVM is optimized by genetic algorithm. By comparing the accuracy of PID calibration models such as PID signal feature extraction, SVM regression, and principal component analysis SVM regression, the superiority of photoionization detector using the signal feature extraction PCA-GA-SVM method to monitor VOCs is verified.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"98 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/chemosensors12050074","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the moist environment of soil-water-air, there is a problem of low accuracy in monitoring volatile organic compounds (VOCs) using a photoionization detector (PID). This study is based on the PID water-soil-gas VOC online monitor developed by this group, online monitoring of the concentration of different constituents of VOCs in different production enterprises of the petroleum and chemical industries in Shandong Province, with the concentration of the laboratory test, to build a relevant model. The correlation coefficient about the PID test concentration and the actual concentration correlation coefficient was obtained through the collection of a large number of data trainings. Based on the application of PID in VOC monitoring, the establishment of a PID high-precision calibration model is important for the precise monitoring of VOCs. In this paper, multiple quantitative analyses were conducted, based on SVM regression of PID response to VOC signals, to study the high-precision VOC monitoring method. To select the response signals of PID under different concentrations of environmental VOCs measured by the research group, first, the PID response to VOC signals was modeled using the support vector machine principle to verify the effect of traditional SVM regression. For the problem of raw data redundancy, calculate the time-domain and frequency-domain characteristics of the PID signal, and conduct the principal component analysis of the time-domain of the PID signal. In order to make the SVM regression more generalized and robust, the selection of kernel function parameters and penalty factor of SVM is optimized by genetic algorithm. By comparing the accuracy of PID calibration models such as PID signal feature extraction, SVM regression, and principal component analysis SVM regression, the superiority of photoionization detector using the signal feature extraction PCA-GA-SVM method to monitor VOCs is verified.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico