The role of unit cell topology in modulating the compaction response of additively manufactured cellular materials using simulations and validation experiments

Sushan Nakarmi, Jihyeon Kim, Lindsey Bezek, Jeffrey A. Leiding, Kwan-Soo Lee, Nitin Daphalapurkar
{"title":"The role of unit cell topology in modulating the compaction response of additively manufactured cellular materials using simulations and validation experiments","authors":"Sushan Nakarmi, Jihyeon Kim, Lindsey Bezek, Jeffrey A. Leiding, Kwan-Soo Lee, Nitin Daphalapurkar","doi":"10.1088/1361-651x/ad472f","DOIUrl":null,"url":null,"abstract":"\n Additive manufacturing has enabled a transformational ability to create cellular structures (or foams) with tailored topology. Compared to their monolithic polymer counterparts, cellular structures are potentially suitable for systems requiring materials with high specific energy-absorbing capability to provide enhanced damping. In this work, we demonstrate the utility of controlling unit-cell topology with the intent of obtaining a desired stress-strain response and energy density. Using mesoscale simulations that resolve the unit-cell sub-structures, we validate the role of unit-cell topology in selectively activating a buckling mode and thereby modulating the characteristic stress-strain response. Simulations incorporate a linear viscoelastic constitutive model and a hyperelastic model for simulating large deformation of the polymer under both tension and compression. Simulated results for nine different cellular structures are compared with experimental data to gain insights into three different modes of buckling and the corresponding stress-strain response.","PeriodicalId":503047,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"89 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad472f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Additive manufacturing has enabled a transformational ability to create cellular structures (or foams) with tailored topology. Compared to their monolithic polymer counterparts, cellular structures are potentially suitable for systems requiring materials with high specific energy-absorbing capability to provide enhanced damping. In this work, we demonstrate the utility of controlling unit-cell topology with the intent of obtaining a desired stress-strain response and energy density. Using mesoscale simulations that resolve the unit-cell sub-structures, we validate the role of unit-cell topology in selectively activating a buckling mode and thereby modulating the characteristic stress-strain response. Simulations incorporate a linear viscoelastic constitutive model and a hyperelastic model for simulating large deformation of the polymer under both tension and compression. Simulated results for nine different cellular structures are compared with experimental data to gain insights into three different modes of buckling and the corresponding stress-strain response.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用模拟和验证实验研究单元格拓扑结构在调节增材制造单元格材料压实响应中的作用
快速成型制造技术带来了一种变革性的能力,可以制造出具有定制拓扑结构的蜂窝结构(或泡沫)。与单片聚合物相比,蜂窝结构可能适用于要求材料具有高比能量吸收能力的系统,以提供更强的阻尼。在这项工作中,我们展示了控制单元单元拓扑结构以获得理想的应力应变响应和能量密度的实用性。通过中尺度模拟来解析单元格子结构,我们验证了单元格拓扑结构在选择性激活屈曲模式从而调节特征应力应变响应中的作用。模拟结合了线性粘弹性结构模型和超弹性模型,用于模拟聚合物在拉伸和压缩条件下的大变形。将九种不同蜂窝结构的模拟结果与实验数据进行比较,以深入了解三种不同的屈曲模式和相应的应力-应变响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the shape memory behaviour of GnP-enhanced nanocomposites: A comparative study between experimental and finite element analysis Simulating hindered grain boundary diffusion using the smoothed boundary method Properties of radiation-induced point defects in austenitic steels: a molecular dynamics study Crystal Plasticity based Constitutive Model for Deformation in Metastable β Titanium Alloys Combining simulation and experimental data via surrogate modelling of continuum dislocation dynamics simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1