Pawandeep Singh, Avnish K. Pandey, Swati Dahiya, Shantanukumar Karkari
{"title":"Determining Sheath edge electric field around cylindrical pins of a DC biased hairpin resonator probe","authors":"Pawandeep Singh, Avnish K. Pandey, Swati Dahiya, Shantanukumar Karkari","doi":"10.1088/1361-6595/ad466e","DOIUrl":null,"url":null,"abstract":"\n The sheath-edge electric field (E_s) is an important parameter to patch the quasi-neutral pre-sheath and non-neutral sheath regions. The choice of E_s significantly influences the theoretically estimated values of the sheath width, potential, and ion density distribution inside the sheath, as determined by the Poisson equation. The precise nature of E_s has been a persistent subject of investigation, giving rise to the question of whether it should be zero or possess a finite value, as proposed by various authors. In this study, we determine the values of E_s by solving Poisson's equation as a boundary-value problem, utilizing experimentally determined values of sheath radius from a DC-biased hairpin probe. The obtained values of E_s are found to be finite and closely align with the analytical expressions presented by K-U Riemann [J. Phys. D: Appl. Phys. 24 493 (1991)] and Igor D. Kaganovich [Phys. Plasmas 9, 4788 (2002)]. Additionally, the impact of electron-penetrating sheaths and interacting sheaths on the applicability of the hairpin probe in low-pressure plasmas is briefly discussed.","PeriodicalId":508056,"journal":{"name":"Plasma Sources Science and Technology","volume":"8 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad466e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The sheath-edge electric field (E_s) is an important parameter to patch the quasi-neutral pre-sheath and non-neutral sheath regions. The choice of E_s significantly influences the theoretically estimated values of the sheath width, potential, and ion density distribution inside the sheath, as determined by the Poisson equation. The precise nature of E_s has been a persistent subject of investigation, giving rise to the question of whether it should be zero or possess a finite value, as proposed by various authors. In this study, we determine the values of E_s by solving Poisson's equation as a boundary-value problem, utilizing experimentally determined values of sheath radius from a DC-biased hairpin probe. The obtained values of E_s are found to be finite and closely align with the analytical expressions presented by K-U Riemann [J. Phys. D: Appl. Phys. 24 493 (1991)] and Igor D. Kaganovich [Phys. Plasmas 9, 4788 (2002)]. Additionally, the impact of electron-penetrating sheaths and interacting sheaths on the applicability of the hairpin probe in low-pressure plasmas is briefly discussed.