Analytical modeling of residual stress formation in hybrid additive manufacturing

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL Cirp Annals-Manufacturing Technology Pub Date : 2024-01-01 DOI:10.1016/j.cirp.2024.04.078
{"title":"Analytical modeling of residual stress formation in hybrid additive manufacturing","authors":"","doi":"10.1016/j.cirp.2024.04.078","DOIUrl":null,"url":null,"abstract":"<div><p>Current methods for modeling hybrid additive manufacturing are computationally inefficient for use in optimization algorithms. An analytical tool is needed to understand how cycling thermal and mechanical loads via 3D printing and cold working reshapes cumulative residual stress within a build volume. A novel analytical model was developed that couples beam theory and superposition to rapidly predict cumulative residual stress. Modeling results were experimentally validated on AlSi10Mg after laser shock peening prescribed layers during powder bed fusion. Results demonstrated a vertically translating heat-affected zone, and the use of beam-based superposition accurately accounted for residual stress redistribution from cyclic printing and peening.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 197-200"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000945","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Current methods for modeling hybrid additive manufacturing are computationally inefficient for use in optimization algorithms. An analytical tool is needed to understand how cycling thermal and mechanical loads via 3D printing and cold working reshapes cumulative residual stress within a build volume. A novel analytical model was developed that couples beam theory and superposition to rapidly predict cumulative residual stress. Modeling results were experimentally validated on AlSi10Mg after laser shock peening prescribed layers during powder bed fusion. Results demonstrated a vertically translating heat-affected zone, and the use of beam-based superposition accurately accounted for residual stress redistribution from cyclic printing and peening.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合增材制造中残余应力形成的分析模型
目前的混合增材制造建模方法计算效率低下,无法用于优化算法。需要一种分析工具来了解通过三维打印和冷加工循环热负荷和机械负荷如何重塑构建体积内的累积残余应力。我们开发了一种新型分析模型,该模型结合了梁理论和叠加法,可快速预测累积残余应力。在粉末床熔合过程中,对规定层进行激光冲击强化后,在 AlSi10Mg 上对建模结果进行了实验验证。结果表明,热影响区是垂直平移的,使用基于光束的叠加法准确地解释了循环打印和强化产生的残余应力再分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
期刊最新文献
Interfacial characteristics in multi-material laser powder bed fusion of CuZr/316L stainless steel Dynamic characterization and control of a back-support exoskeleton 3D-printed cycloidal actuator Throughput scaling and thermomechanical behaviour in multiplexed fused filament fabrication Generative AI and neural networks towards advanced robot cognition Precision optimized process design for highly repeatable handling with articulated industrial robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1