Sebastiano Tomassetti , Pio Francesco Muciaccia , Mariano Pierantozzi , Giovanni Di Nicola
{"title":"Dynamic viscosity of low GWP refrigerants in the liquid phase: An empirical equation and an artificial neural network","authors":"Sebastiano Tomassetti , Pio Francesco Muciaccia , Mariano Pierantozzi , Giovanni Di Nicola","doi":"10.1016/j.ijrefrig.2024.05.010","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a simple correlation for describing the temperature and pressure dependence of the liquid dynamic viscosity of low GWP refrigerants, namely HydroFluoroOlefins (HFOs) and HydroChloroFluoroOlefins (HCFOs). The model has 3 input parameters (i.e., reduced temperature, reduced pressure, and acentric factor) and 6 coefficients which were regressed on 794 experimental data collated from the literature for 7 alternative refrigerants (i.e., R1233zd(E), R1234yf, R1234ze(E), R1234ze(Z), R1224yd(Z), R1336mzz(E), and R1336mzz(Z)). Moreover, a multi-layer perceptron neural network for the liquid dynamic viscosity of the studied fluids was developed from the selected dataset. The artificial network has the same 3 input parameters of the correlation and one hidden layer with 19 neurons. The results of the proposed correlation proved that it is an accurate model for calculating the dynamic viscosity of the studied liquid refrigerants, despite its simplicity. It ensured an average absolute relative deviation of the liquid dynamic viscosity (AARD(<em>η</em>)) of 2.88 %, lower than that given by other literature correlations. As expected, the multi-layer perceptron neural network provided the best results for all the selected refrigerants (AARD(<em>η</em>) = 0.86 % for the complete dataset), proving that it can be considered a reference for the development of other models.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0140700724001683/pdfft?md5=57e43b0ab82295d78c95f11b274742f5&pid=1-s2.0-S0140700724001683-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724001683","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a simple correlation for describing the temperature and pressure dependence of the liquid dynamic viscosity of low GWP refrigerants, namely HydroFluoroOlefins (HFOs) and HydroChloroFluoroOlefins (HCFOs). The model has 3 input parameters (i.e., reduced temperature, reduced pressure, and acentric factor) and 6 coefficients which were regressed on 794 experimental data collated from the literature for 7 alternative refrigerants (i.e., R1233zd(E), R1234yf, R1234ze(E), R1234ze(Z), R1224yd(Z), R1336mzz(E), and R1336mzz(Z)). Moreover, a multi-layer perceptron neural network for the liquid dynamic viscosity of the studied fluids was developed from the selected dataset. The artificial network has the same 3 input parameters of the correlation and one hidden layer with 19 neurons. The results of the proposed correlation proved that it is an accurate model for calculating the dynamic viscosity of the studied liquid refrigerants, despite its simplicity. It ensured an average absolute relative deviation of the liquid dynamic viscosity (AARD(η)) of 2.88 %, lower than that given by other literature correlations. As expected, the multi-layer perceptron neural network provided the best results for all the selected refrigerants (AARD(η) = 0.86 % for the complete dataset), proving that it can be considered a reference for the development of other models.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.