Xia Cai , Yan Song , Lin Cai , Xin Su , GuiHua Liang , YanMing Xu
{"title":"Analysis on characteristics of extreme precipitation indices and atmospheric circulation in Northern Shanxi","authors":"Xia Cai , Yan Song , Lin Cai , Xin Su , GuiHua Liang , YanMing Xu","doi":"10.1016/j.rcar.2024.03.007","DOIUrl":null,"url":null,"abstract":"<div><p>This article utilizes daily precipitation data from 28 national meteorological stations in northern Shanxi Province spanning from 1972 to 2020, and the US NCEP/NCAR monthly average reanalysis and ERA5 monthly average reanalysis data. The study employs techniques such as empirical orthogonal function (EOF) decomposition, Mann-Kendall mutation and other methods to investigate the spatiotemporal distribution of extreme precipitation index in northern Shanxi and their correlation with atmospheric circulation. The research results show that: the absolute index, relative index, intensity index and sustained dry period index (CDD) in the continuous index appear from southwest to northeast. The spatial distribution characteristics of the central region decrease, while the continuous wet period (CWD) decreases from the central to the east and west. The three indices Rx1day, Rx5day, and CWD mutated in 1978, 1975, and 1983 respectively, and other extreme precipitation indices all appeared in a sudden change from a low-value period to a high-value period occurred around 2010. In the high-value years of the summer extreme precipitation index, there is a significant negative anomaly in the height field in the mid-high latitude regions of Eurasia. Northern Shanxi is controlled by a broad low-pressure trough in the Lake Baikal area. Water vapor transported via the east, west, and south routes converges in the northern Shanxi region and encounters cold air from the north. There is a strong upward motion anomaly at 500 hPa in the troposphere, and the dynamic conditions of upper-level divergence and lower-level convergence lead to more summer extreme precipitation in the northern Shanxi region. Conversely, in the low-value years of the summer extreme precipitation index, northern Shanxi is affected by a strong high-pressure ridge north of Lake Baikal. There is a downward motion anomaly at 500 hPa, and the northern Shanxi region lacks water vapor. The cold and warm air cannot converge, and both the water vapor conditions and dynamic conditions are poor, which is not conducive to the production of extreme precipitation in northern Shanxi.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2097158324000363/pdfft?md5=b36ae8234fa8a71c6c4997cfcfb442cc&pid=1-s2.0-S2097158324000363-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2097158324000363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article utilizes daily precipitation data from 28 national meteorological stations in northern Shanxi Province spanning from 1972 to 2020, and the US NCEP/NCAR monthly average reanalysis and ERA5 monthly average reanalysis data. The study employs techniques such as empirical orthogonal function (EOF) decomposition, Mann-Kendall mutation and other methods to investigate the spatiotemporal distribution of extreme precipitation index in northern Shanxi and their correlation with atmospheric circulation. The research results show that: the absolute index, relative index, intensity index and sustained dry period index (CDD) in the continuous index appear from southwest to northeast. The spatial distribution characteristics of the central region decrease, while the continuous wet period (CWD) decreases from the central to the east and west. The three indices Rx1day, Rx5day, and CWD mutated in 1978, 1975, and 1983 respectively, and other extreme precipitation indices all appeared in a sudden change from a low-value period to a high-value period occurred around 2010. In the high-value years of the summer extreme precipitation index, there is a significant negative anomaly in the height field in the mid-high latitude regions of Eurasia. Northern Shanxi is controlled by a broad low-pressure trough in the Lake Baikal area. Water vapor transported via the east, west, and south routes converges in the northern Shanxi region and encounters cold air from the north. There is a strong upward motion anomaly at 500 hPa in the troposphere, and the dynamic conditions of upper-level divergence and lower-level convergence lead to more summer extreme precipitation in the northern Shanxi region. Conversely, in the low-value years of the summer extreme precipitation index, northern Shanxi is affected by a strong high-pressure ridge north of Lake Baikal. There is a downward motion anomaly at 500 hPa, and the northern Shanxi region lacks water vapor. The cold and warm air cannot converge, and both the water vapor conditions and dynamic conditions are poor, which is not conducive to the production of extreme precipitation in northern Shanxi.