Assignment of charmed-strange Ds0(2590)+ and DsJ(3040)+

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, NUCLEAR Nuclear Physics A Pub Date : 2024-05-15 DOI:10.1016/j.nuclphysa.2024.122893
Zi-Han Jiang, Ailin Zhang
{"title":"Assignment of charmed-strange Ds0(2590)+ and DsJ(3040)+","authors":"Zi-Han Jiang,&nbsp;Ailin Zhang","doi":"10.1016/j.nuclphysa.2024.122893","DOIUrl":null,"url":null,"abstract":"<div><p>Based on analyses of the mass and the strong decay features, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi><mn>0</mn></mrow></msub><msup><mrow><mo>(</mo><mn>2590</mn><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup></math></span> observed by LHCb collaboration is identified as a radial excitation of the pseudoscalar <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>, and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi><mi>J</mi></mrow></msub><msup><mrow><mo>(</mo><mn>3040</mn><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup></math></span> observed by BaBar collaboration is identified as a radial excitation of <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi><mn>1</mn></mrow></msub><msup><mrow><mo>(</mo><mn>2536</mn><mo>)</mo></mrow><mrow><mo>±</mo></mrow></msup></math></span>. <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi><mn>0</mn></mrow></msub><msup><mrow><mo>(</mo><mn>2590</mn><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup></math></span> is possibly a pure <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mn>2</mn><mspace></mspace><mmultiscripts><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>1</mn></mrow></mmultiscripts><mo>)</mo></math></span> meson, both basic <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi><mn>1</mn></mrow></msub><msup><mrow><mo>(</mo><mn>2536</mn><mo>)</mo></mrow><mrow><mo>±</mo></mrow></msup></math></span> and radially excited <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi><mi>J</mi></mrow></msub><msup><mrow><mo>(</mo><mn>3040</mn><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup></math></span> are possibly the mixtures <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>n</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> between spin triplet <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>n</mi><mspace></mspace><mmultiscripts><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>3</mn></mrow></mmultiscripts><mo>)</mo></math></span> and spin singlet <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>n</mi><mspace></mspace><mmultiscripts><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>1</mn></mrow></mmultiscripts><mo>)</mo></math></span>. In this arrangement, their masses meet the linear behavior of the radial Regge trajectory very well. In the <span><math><mmultiscripts><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>3</mn></mrow></mmultiscripts></math></span> strong decay model, the decay channels of <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi><mn>0</mn></mrow></msub><msup><mrow><mo>(</mo><mn>2590</mn><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup></math></span> are <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo><mn>0</mn></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> and <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo><mo>+</mo></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>, the total decay width is predicted with <span><math><mi>Γ</mi><mo>=</mo><mn>76.12</mn></math></span> MeV. The main decay channels of <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi><mi>J</mi></mrow></msub><msup><mrow><mo>(</mo><mn>3040</mn><mo>)</mo></mrow><mrow><mo>+</mo></mrow></msup></math></span> are <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo><mn>0</mn></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>/<span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo><mo>+</mo></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo><mn>0</mn></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo><mo>+</mo></mrow></msup></math></span>/<span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo><mo>+</mo></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo><mn>0</mn></mrow></msup></math></span>, the total decay width is predicted with <span><math><mi>Γ</mi><mo>=</mo><mn>283.46</mn></math></span> MeV. These numerical strong decay results are consistent with the experiment data and support our arrangement. The dimensionless strength creation parameter <em>γ</em> plays an important role in the calculation, and <span><math><mi>γ</mi><mo>=</mo><mn>9.57</mn></math></span> is fixed through a comparison of the predicted strong decay widths of <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>s</mi><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mn>2573</mn><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>s</mi><mn>3</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><msup><mrow><mo>(</mo><mn>2860</mn><mo>)</mo></mrow><mrow><mo>±</mo></mrow></msup></math></span> with experimental data.</p></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1048 ","pages":"Article 122893"},"PeriodicalIF":1.7000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947424000757","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Based on analyses of the mass and the strong decay features, Ds0(2590)+ observed by LHCb collaboration is identified as a radial excitation of the pseudoscalar Ds, and DsJ(3040)+ observed by BaBar collaboration is identified as a radial excitation of Ds1(2536)±. Ds0(2590)+ is possibly a pure Ds(2S01) meson, both basic Ds1(2536)± and radially excited DsJ(3040)+ are possibly the mixtures Ds(nP1) between spin triplet Ds(nP13) and spin singlet Ds(nP11). In this arrangement, their masses meet the linear behavior of the radial Regge trajectory very well. In the P03 strong decay model, the decay channels of Ds0(2590)+ are D0K+ and D+K0, the total decay width is predicted with Γ=76.12 MeV. The main decay channels of DsJ(3040)+ are D0K+/D+K0 and D0K+/D+K0, the total decay width is predicted with Γ=283.46 MeV. These numerical strong decay results are consistent with the experiment data and support our arrangement. The dimensionless strength creation parameter γ plays an important role in the calculation, and γ=9.57 is fixed through a comparison of the predicted strong decay widths of Ds2(2573) and Ds3(2860)± with experimental data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粲异 D0(2590)+ 和 D(3040)+ 的分配
根据对质量和强衰变特征的分析,LHCb 合作组织观测到的 Ds0(2590)+ 被确定为伪高子 Ds 的径向激发,BaBar 合作组织观测到的 DsJ(3040)+ 被确定为 Ds1(2536)± 的径向激发。Ds0(2590)+可能是纯Ds(2S01)介子,基本Ds1(2536)±和径向激发的DsJ(3040)+可能是自旋三重Ds(nP13)和自旋单重Ds(nP11)之间的混合物Ds(nP1)。在这种排列中,它们的质量非常符合径向雷格轨迹的线性行为。在 P03 强衰变模型中,Ds0(2590)+ 的衰变通道是 D⁎0K+ 和 D⁎+K0,预测的总衰变宽度为 Γ=76.12 MeV。DsJ(3040)+的主要衰变通道是D⁎0K+/D⁎+K0和D⁎0K⁎+/D⁎+K⁎0,预测的总衰变宽度为Γ=283.46 MeV。这些数值强衰变结果与实验数据一致,支持我们的安排。无量纲强度创造参数γ在计算中起着重要作用,通过对Ds2⁎(2573)和Ds3⁎(2860)±的预测强衰变宽度与实验数据的比较,我们确定了γ=9.57。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nuclear Physics A
Nuclear Physics A 物理-物理:核物理
CiteScore
3.60
自引率
7.10%
发文量
113
审稿时长
61 days
期刊介绍: Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.
期刊最新文献
Editorial Board Description of the processes e+e− → π+π− and τ− → π−π0ντ in the NJL model with value of the vector coupling constant gρ = 6 Measurement of charge-changing cross section of neutron-rich nitrogen isotopes for determining their proton radii Mass resolved angular distribution of fission products in 12C+232Th reaction at sub-barrier energy Quarkyonic equation of state with momentum-dependent interaction and neutron star structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1