Mass resolved angular distribution of fission products in 12C+232Th reaction at sub-barrier energy

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, NUCLEAR Nuclear Physics A Pub Date : 2024-11-22 DOI:10.1016/j.nuclphysa.2024.122985
S. Kumar , S. Patra , A. Mhatre , A. Kumar , K. Ramachandran , R. Tripathi
{"title":"Mass resolved angular distribution of fission products in 12C+232Th reaction at sub-barrier energy","authors":"S. Kumar ,&nbsp;S. Patra ,&nbsp;A. Mhatre ,&nbsp;A. Kumar ,&nbsp;K. Ramachandran ,&nbsp;R. Tripathi","doi":"10.1016/j.nuclphysa.2024.122985","DOIUrl":null,"url":null,"abstract":"<div><div>This article reports the study of mass resolved angular distribution of the fission products and the angular anisotropy in <sup>232</sup>Th(<sup>12</sup>C,f) reaction at sub-barrier energy to investigate the possible role of shell effects and non-compound nucleus fission. In literature, average anisotropy values reported earlier for this system at sub-barrier energy widely vary. The present study was carried out using the recoil catcher technique followed by off-line γ-ray spectrometry at 62.5 MeV beam energy. Angular anisotropies of fission products showed slight enhancement in the symmetric mass region. Significantly higher value of the experimental average anisotropy (1.46 ± 0.06) compared to that obtained by Statistical Saddle Point Model (SSPM) calculation indicated the possible role of shell effect and non-compound nucleus fission at the present beam energy. Consideration of shell effects resulted in an enhancement of the calculated anisotropy, though it was still slightly lower compared to the experimental value. The contribution from the non-compound nucleus fission was confirmed based of the deviation of the SSPM calculation in the symmetric mass region, where shell effects are not expected to be significant. In order to reproduce the error weighted average anisotropy (1.73 ± 0.18) for the symmetric mass region, the required value for the variance of <em>K</em>-distribution was much lower compared to the value obtained from the SSPM calculations. Presence of insignificant mass dependence of anisotropy suggests quasifission to be the dominant non-compound nucleus fission mechanism for the present system at the sub-barrier energy. This is consistent with the earlier studies [Mein <em>et al.</em>, Phys. Rev. C55 (1997) R995; Williams <em>et al.</em> Phys. Rev. C 88 (2013) 034611] attributing anomaly in the overall fission fragment angular distribution to the contribution from quasifission.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1054 ","pages":"Article 122985"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947424001672","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

This article reports the study of mass resolved angular distribution of the fission products and the angular anisotropy in 232Th(12C,f) reaction at sub-barrier energy to investigate the possible role of shell effects and non-compound nucleus fission. In literature, average anisotropy values reported earlier for this system at sub-barrier energy widely vary. The present study was carried out using the recoil catcher technique followed by off-line γ-ray spectrometry at 62.5 MeV beam energy. Angular anisotropies of fission products showed slight enhancement in the symmetric mass region. Significantly higher value of the experimental average anisotropy (1.46 ± 0.06) compared to that obtained by Statistical Saddle Point Model (SSPM) calculation indicated the possible role of shell effect and non-compound nucleus fission at the present beam energy. Consideration of shell effects resulted in an enhancement of the calculated anisotropy, though it was still slightly lower compared to the experimental value. The contribution from the non-compound nucleus fission was confirmed based of the deviation of the SSPM calculation in the symmetric mass region, where shell effects are not expected to be significant. In order to reproduce the error weighted average anisotropy (1.73 ± 0.18) for the symmetric mass region, the required value for the variance of K-distribution was much lower compared to the value obtained from the SSPM calculations. Presence of insignificant mass dependence of anisotropy suggests quasifission to be the dominant non-compound nucleus fission mechanism for the present system at the sub-barrier energy. This is consistent with the earlier studies [Mein et al., Phys. Rev. C55 (1997) R995; Williams et al. Phys. Rev. C 88 (2013) 034611] attributing anomaly in the overall fission fragment angular distribution to the contribution from quasifission.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nuclear Physics A
Nuclear Physics A 物理-物理:核物理
CiteScore
3.60
自引率
7.10%
发文量
113
审稿时长
61 days
期刊介绍: Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.
期刊最新文献
Editorial Board Description of the processes e+e− → π+π− and τ− → π−π0ντ in the NJL model with value of the vector coupling constant gρ = 6 Measurement of charge-changing cross section of neutron-rich nitrogen isotopes for determining their proton radii Mass resolved angular distribution of fission products in 12C+232Th reaction at sub-barrier energy Quarkyonic equation of state with momentum-dependent interaction and neutron star structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1