Utilizing convolutional neural networks (CNN) and U-Net architecture for precise crop and weed segmentation in agricultural imagery: A deep learning approach
Mughair Aslam Bhatti , M.S. Syam , Huafeng Chen , Yurong Hu , Li Wai Keung , Zeeshan Zeeshan , Yasser A. Ali , Nadia Sarhan
{"title":"Utilizing convolutional neural networks (CNN) and U-Net architecture for precise crop and weed segmentation in agricultural imagery: A deep learning approach","authors":"Mughair Aslam Bhatti , M.S. Syam , Huafeng Chen , Yurong Hu , Li Wai Keung , Zeeshan Zeeshan , Yasser A. Ali , Nadia Sarhan","doi":"10.1016/j.bdr.2024.100465","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the implementation and evaluation of a convolutional neural network (CNN) based image segmentation model using the U-Net architecture for forest image segmentation. The proposed algorithm starts by preprocessing the datasets of satellite images and corresponding masks from a repository source. Data preprocessing involves resizing, normalizing, and splitting the images and masks into training and testing datasets. The U-Net model architecture, comprising encoder and decoder parts with skip connections, is defined and compiled with binary cross-entropy loss and Adam optimizer. Training includes early stopping and checkpoint saving mechanisms to prevent overfitting and retain the best model weights. Evaluation metrics such as Intersection over Union (IoU), Dice coefficient, pixel accuracy, precision, recall, specificity, and F1-score are computed to assess the model's performance. Visualization of results includes comparing predicted segmentation masks with ground truth masks for qualitative analysis. The study emphasizes the importance of training data size in achieving accurate segmentation models and highlights the potential of U-Net architecture for forest image segmentation tasks.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000418","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the implementation and evaluation of a convolutional neural network (CNN) based image segmentation model using the U-Net architecture for forest image segmentation. The proposed algorithm starts by preprocessing the datasets of satellite images and corresponding masks from a repository source. Data preprocessing involves resizing, normalizing, and splitting the images and masks into training and testing datasets. The U-Net model architecture, comprising encoder and decoder parts with skip connections, is defined and compiled with binary cross-entropy loss and Adam optimizer. Training includes early stopping and checkpoint saving mechanisms to prevent overfitting and retain the best model weights. Evaluation metrics such as Intersection over Union (IoU), Dice coefficient, pixel accuracy, precision, recall, specificity, and F1-score are computed to assess the model's performance. Visualization of results includes comparing predicted segmentation masks with ground truth masks for qualitative analysis. The study emphasizes the importance of training data size in achieving accurate segmentation models and highlights the potential of U-Net architecture for forest image segmentation tasks.