Automatic non-destructive estimation of polyphenol oxidase and peroxidase enzyme activity levels in three bell pepper varieties by Vis/NIR spectroscopy imaging data based on machine learning methods
Meysam Latifi Amoghin , Yousef Abbaspour-Gilandeh , Mohammad Tahmasebi , Juan Ignacio Arribas
{"title":"Automatic non-destructive estimation of polyphenol oxidase and peroxidase enzyme activity levels in three bell pepper varieties by Vis/NIR spectroscopy imaging data based on machine learning methods","authors":"Meysam Latifi Amoghin , Yousef Abbaspour-Gilandeh , Mohammad Tahmasebi , Juan Ignacio Arribas","doi":"10.1016/j.chemolab.2024.105137","DOIUrl":null,"url":null,"abstract":"<div><p>The browning process of food products if often formed upon cutting and damage during their processing, transport, and storage, amongst other potential sources and reasons. Enzymic browning can be mainly due to polyphenol oxidase (PPO) and peroxidase (POD) enzymes. Visible/near-infrared (Vis/NIR) imaging spectroscopy in the range of 350–1150 nm was used in this study for automatic and non-destructive evaluation of PPO and POD activity levels in three bell pepper varieties (red, yellow, orange; N = 30), with a total of 30 inputs samples in each variety. The spectral data were then modeled by the partial least squares regression (PLSR) throughout the whole spectral range, without using any subset of the most effective wavelength (EW) values. Regression determination coefficient (R<sup>2</sup>) values for the estimation (prediction) of POD enzyme activity levels were 0.794, 0.772, and 0.726 for red, yellow, and orange bell peppers, respectively, all over the validation set. At the same time, the activity levels of PPO enzyme over bell peppers showed R<sup>2</sup> values of 0.901, 0.810, and 0.859, for red, yellow, and orange bell peppers, respectively, all over the validation set. In addition, a combination of support vector machine (SVM) with either genetic algorithms (GA), particle swarm optimization (PSO), ant colony optimization (ACO), or imperialistic competitive algorithms (ICA) hybrid machine learning (ML) techniques were used to select the optimal (discriminant) spectral EW wavelength values, and regression performance was consistently improved, to judge from higher regression fit R<sup>2</sup> values. Either 14 or 15 EWs were computed and selected in order of their discriminative power using previously mentioned ML techniques. The hybrid SVM-PSO method resulted the best one in the process of selecting the most effective wavelength values (nm). On the other hand, three regression methods comprising PLSR, multiple least regression (MLR), and neural network (NN), were employed to model the SVM-PSO selected EWs. The ratio of performance to deviation (RPD), the R<sup>2</sup> and the root mean square error (RMSE), over the test set, for the non-linear NN regression method exhibited better results as compared to the other two regression methods, being closely followed by PLSR, and therefore NN regression method was selected as the best approach for modeling the most effective spectral wavelength values in this study.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"250 ","pages":"Article 105137"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169743924000777/pdfft?md5=1c66f4c9e2d7fdb5e8fd71595aa511f4&pid=1-s2.0-S0169743924000777-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924000777","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The browning process of food products if often formed upon cutting and damage during their processing, transport, and storage, amongst other potential sources and reasons. Enzymic browning can be mainly due to polyphenol oxidase (PPO) and peroxidase (POD) enzymes. Visible/near-infrared (Vis/NIR) imaging spectroscopy in the range of 350–1150 nm was used in this study for automatic and non-destructive evaluation of PPO and POD activity levels in three bell pepper varieties (red, yellow, orange; N = 30), with a total of 30 inputs samples in each variety. The spectral data were then modeled by the partial least squares regression (PLSR) throughout the whole spectral range, without using any subset of the most effective wavelength (EW) values. Regression determination coefficient (R2) values for the estimation (prediction) of POD enzyme activity levels were 0.794, 0.772, and 0.726 for red, yellow, and orange bell peppers, respectively, all over the validation set. At the same time, the activity levels of PPO enzyme over bell peppers showed R2 values of 0.901, 0.810, and 0.859, for red, yellow, and orange bell peppers, respectively, all over the validation set. In addition, a combination of support vector machine (SVM) with either genetic algorithms (GA), particle swarm optimization (PSO), ant colony optimization (ACO), or imperialistic competitive algorithms (ICA) hybrid machine learning (ML) techniques were used to select the optimal (discriminant) spectral EW wavelength values, and regression performance was consistently improved, to judge from higher regression fit R2 values. Either 14 or 15 EWs were computed and selected in order of their discriminative power using previously mentioned ML techniques. The hybrid SVM-PSO method resulted the best one in the process of selecting the most effective wavelength values (nm). On the other hand, three regression methods comprising PLSR, multiple least regression (MLR), and neural network (NN), were employed to model the SVM-PSO selected EWs. The ratio of performance to deviation (RPD), the R2 and the root mean square error (RMSE), over the test set, for the non-linear NN regression method exhibited better results as compared to the other two regression methods, being closely followed by PLSR, and therefore NN regression method was selected as the best approach for modeling the most effective spectral wavelength values in this study.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.