Dandan Wang , Yusheng Li , Yongge Yang , Chao Ding , Yuyao Wei , Dong Liu , Hua Li , Huan Bi , Shikai Chen , Sujun Ji , Boyu Zhang , Yao Guo , Huiyun Wei , Hongshi Li , Shuzi Hayase , Qing Shen
{"title":"Energetic disorder dominates optical properties and recombination dynamics in tin-lead perovskite nanocrystals","authors":"Dandan Wang , Yusheng Li , Yongge Yang , Chao Ding , Yuyao Wei , Dong Liu , Hua Li , Huan Bi , Shikai Chen , Sujun Ji , Boyu Zhang , Yao Guo , Huiyun Wei , Hongshi Li , Shuzi Hayase , Qing Shen","doi":"10.1016/j.esci.2024.100279","DOIUrl":null,"url":null,"abstract":"<div><div>Tin-lead alloyed perovskite nanocrystals (PNCs) offer a promising pathway toward low-toxicity and air-stable light-emitting devices. However, substantial energetic disorder has thus far hindered their lighting applications compared to pure lead-based PNCs. A fundamental understanding of this disorder and its impact on optical properties is crucial for overcoming this limitation. Here, using temperature-dependent static and transient absorption spectroscopy, we meticulously distinguish the contributions of static disorder (including defects, impurities, etc.) and dynamic disorder (carrier–phonon interactions). We reveal how these disorders shape band-tail structure and ultimately influence inter-band carrier recombination behaviors. Surprisingly, we find that static and dynamic disorder primarily control band-tail defect states and bandgap renormalization, respectively, which together modulate fast carrier trapping and slow band-band recombination rates. Furthermore, we link these disorders to the tin-induced symmetry-lowering distortions in tin-lead alloyed PNCs. These findings illuminate critical design principles for highly luminescent, low-toxicity tin-lead PNCs, accelerating their adoption in optoelectronic applications.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 1","pages":"Article 100279"},"PeriodicalIF":42.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724000636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Tin-lead alloyed perovskite nanocrystals (PNCs) offer a promising pathway toward low-toxicity and air-stable light-emitting devices. However, substantial energetic disorder has thus far hindered their lighting applications compared to pure lead-based PNCs. A fundamental understanding of this disorder and its impact on optical properties is crucial for overcoming this limitation. Here, using temperature-dependent static and transient absorption spectroscopy, we meticulously distinguish the contributions of static disorder (including defects, impurities, etc.) and dynamic disorder (carrier–phonon interactions). We reveal how these disorders shape band-tail structure and ultimately influence inter-band carrier recombination behaviors. Surprisingly, we find that static and dynamic disorder primarily control band-tail defect states and bandgap renormalization, respectively, which together modulate fast carrier trapping and slow band-band recombination rates. Furthermore, we link these disorders to the tin-induced symmetry-lowering distortions in tin-lead alloyed PNCs. These findings illuminate critical design principles for highly luminescent, low-toxicity tin-lead PNCs, accelerating their adoption in optoelectronic applications.