Pneumatic servo position control optimization using adaptive-domain prescribed performance control with evolutionary mating algorithm

Addie Irawan, Mohd Herwan Sulaiman, Mohd Syakirin Ramli, Mohd Iskandar Putra Azahar
{"title":"Pneumatic servo position control optimization using adaptive-domain prescribed performance control with evolutionary mating algorithm","authors":"Addie Irawan,&nbsp;Mohd Herwan Sulaiman,&nbsp;Mohd Syakirin Ramli,&nbsp;Mohd Iskandar Putra Azahar","doi":"10.1016/j.rico.2024.100434","DOIUrl":null,"url":null,"abstract":"<div><p>Pneumatic servo systems face challenges such as friction, compressibility, and nonlinear dynamics, necessitating advanced control techniques. Research suggests model-based, model-free, hybrid, and optimization-based methods have their strengths. Therefore, this study presents an optimal control strategy using Adaptive Domain Prescribed Performance Control (AD-PPC) cascaded with PID and optimized using the Evolutionary Mating Algorithm (EMA) for a pneumatic servo system (PSS). The goal is to achieve faster transient control and stable rod-piston positioning with minimal friction through the hysteresis phenomenon of the targeted proportional valve-controlled double-acting pneumatic cylinder (PPVDC) representing the PSS. The novel EMA optimizes the cascaded controller based on the tracking error as its objective function. Simulation studies verify the proposed AD-PPC-PID controller with the PPVDC model plant, iteratively optimized by the EMA. The analytical study compares this setup's control system and optimization model with the same control system model using alternative optimization methods. The testing employs step and multi-step signals for PPVDC's rod-piston position input. Results show that the EMA-tuned AD-PPC-PID outperforms AD-PPC-PID controller with other optimizers. For both input trajectory tests, EMA-tuned AD-PPC-PID shows faster response times, with average improvements of 30 % in settling times and 70 % in tracking performance metrics compared to other optimizers, making it robust for nonlinear system applications like PPVDC rod-piston positioning.</p></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"15 ","pages":"Article 100434"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266672072400064X/pdfft?md5=d7c28dea3cb31ff1676d7fb9c083fa11&pid=1-s2.0-S266672072400064X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266672072400064X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Pneumatic servo systems face challenges such as friction, compressibility, and nonlinear dynamics, necessitating advanced control techniques. Research suggests model-based, model-free, hybrid, and optimization-based methods have their strengths. Therefore, this study presents an optimal control strategy using Adaptive Domain Prescribed Performance Control (AD-PPC) cascaded with PID and optimized using the Evolutionary Mating Algorithm (EMA) for a pneumatic servo system (PSS). The goal is to achieve faster transient control and stable rod-piston positioning with minimal friction through the hysteresis phenomenon of the targeted proportional valve-controlled double-acting pneumatic cylinder (PPVDC) representing the PSS. The novel EMA optimizes the cascaded controller based on the tracking error as its objective function. Simulation studies verify the proposed AD-PPC-PID controller with the PPVDC model plant, iteratively optimized by the EMA. The analytical study compares this setup's control system and optimization model with the same control system model using alternative optimization methods. The testing employs step and multi-step signals for PPVDC's rod-piston position input. Results show that the EMA-tuned AD-PPC-PID outperforms AD-PPC-PID controller with other optimizers. For both input trajectory tests, EMA-tuned AD-PPC-PID shows faster response times, with average improvements of 30 % in settling times and 70 % in tracking performance metrics compared to other optimizers, making it robust for nonlinear system applications like PPVDC rod-piston positioning.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用进化匹配算法的自适应域规定性能控制优化气动伺服位置控制
气动伺服系统面临着摩擦、可压缩性和非线性动力学等挑战,因此需要先进的控制技术。研究表明,基于模型、无模型、混合和优化的方法各有所长。因此,本研究针对气动伺服系统 (PSS) 提出了一种使用自适应域规定性能控制 (AD-PPC) 与 PID 级联的优化控制策略,并使用进化匹配算法 (EMA) 进行了优化。目标是通过代表 PSS 的目标比例阀控制双作用气动缸 (PPVDC) 的滞后现象,实现更快的瞬态控制和稳定的杆-活塞定位,并将摩擦降至最低。新型 EMA 以跟踪误差为目标函数,对级联控制器进行优化。仿真研究验证了所提出的 AD-PPC-PID 控制器与经 EMA 迭代优化的 PPVDC 模型工厂。分析研究将此设置的控制系统和优化模型与使用其他优化方法的相同控制系统模型进行了比较。测试采用阶跃和多阶跃信号作为 PPVDC 的活塞杆位置输入。结果表明,经过 EMA 调整的 AD-PPC-PID 优于使用其他优化器的 AD-PPC-PID 控制器。在两种输入轨迹测试中,EMA 调节 AD-PPC-PID 的响应速度都更快,与其他优化器相比,其稳定时间平均缩短了 30%,跟踪性能指标平均提高了 70%,这使其在 PPVDC 杆活塞定位等非线性系统应用中表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
期刊最新文献
Optimal control analysis of a mathematical model for guava nutrients in an integrated farming with cost-effectiveness Observer-based fuzzy T–S control with an estimation error guarantee for MPPT of a photovoltaic battery charger in partial shade conditions Satellite imagery, big data, IoT and deep learning techniques for wheat yield prediction in Morocco Selective opposition based constrained barnacle mating optimization: Theory and applications Comparative exploration on EEG signal filtering using window control methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1