Multiple sclerosis diagnosis with brain MRI retrieval: A deep learning approach

IF 3.2 Q3 Mathematics Results in Control and Optimization Pub Date : 2025-02-01 DOI:10.1016/j.rico.2025.100533
R.M. Haggag , Eman M. Ali , M.E. Khalifa , Mohamed Taha
{"title":"Multiple sclerosis diagnosis with brain MRI retrieval: A deep learning approach","authors":"R.M. Haggag ,&nbsp;Eman M. Ali ,&nbsp;M.E. Khalifa ,&nbsp;Mohamed Taha","doi":"10.1016/j.rico.2025.100533","DOIUrl":null,"url":null,"abstract":"<div><div>Multiple Sclerosis (MS) is an auto-immune disorder affecting the central nervous system, affecting 2.8 million people worldwide. Early diagnosis is crucial due to its profound social and economic impacts. MRI is commonly used for monitoring abnormalities. This study proposes a novel Content-Based Medical Image Retrieval (CBMIR) framework using Convolutional Neural Networks (CNN) and Transfer Learning (TL) for MS diagnosis using MRI data. Our framework utilizes The Inception V3 model that is pre-trained on ImageNet and RadImageNet datasets, and we modified the model by adding a new block of six layers to reduce the features’ dimensionality in the feature extraction phase. Fine-tuning the hyper-parameters for the whole system was done using the Bayesian optimizer. We experiment with Nine different distance metrics to measure query and database image similarity. Experiments on four public MS-MRI datasets demonstrated the end-to-end deep learning framework’s generalizability without extensive pre-processing, with mAP scores of 86.20%, 93.77%, 94.18%, and 90.46%, respectively demonstrating its effectiveness in retrieval. Moreover, a comparison with related CBMIR systems confirmed the effectiveness of our model.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"18 ","pages":"Article 100533"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725000190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple Sclerosis (MS) is an auto-immune disorder affecting the central nervous system, affecting 2.8 million people worldwide. Early diagnosis is crucial due to its profound social and economic impacts. MRI is commonly used for monitoring abnormalities. This study proposes a novel Content-Based Medical Image Retrieval (CBMIR) framework using Convolutional Neural Networks (CNN) and Transfer Learning (TL) for MS diagnosis using MRI data. Our framework utilizes The Inception V3 model that is pre-trained on ImageNet and RadImageNet datasets, and we modified the model by adding a new block of six layers to reduce the features’ dimensionality in the feature extraction phase. Fine-tuning the hyper-parameters for the whole system was done using the Bayesian optimizer. We experiment with Nine different distance metrics to measure query and database image similarity. Experiments on four public MS-MRI datasets demonstrated the end-to-end deep learning framework’s generalizability without extensive pre-processing, with mAP scores of 86.20%, 93.77%, 94.18%, and 90.46%, respectively demonstrating its effectiveness in retrieval. Moreover, a comparison with related CBMIR systems confirmed the effectiveness of our model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多发性硬化症诊断脑MRI检索:一种深度学习方法
多发性硬化症(MS)是一种影响中枢神经系统的自身免疫性疾病,全球有280万人受到影响。由于其深远的社会和经济影响,早期诊断至关重要。MRI通常用于监测异常。本研究提出了一种基于内容的医学图像检索(CBMIR)框架,该框架使用卷积神经网络(CNN)和迁移学习(TL)对MRI数据进行MS诊断。我们的框架使用了在ImageNet和RadImageNet数据集上预训练的Inception V3模型,我们通过添加一个六层的新块来修改模型,以在特征提取阶段降低特征的维度。利用贝叶斯优化器对整个系统的超参数进行了微调。我们用9种不同的距离度量来测量查询和数据库图像的相似度。在4个公开的MS-MRI数据集上进行的实验表明,端到端深度学习框架在不进行大量预处理的情况下具有良好的泛化性,mAP得分分别为86.20%、93.77%、94.18%和90.46%,表明其在检索方面的有效性。此外,与相关CBMIR系统的比较证实了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
期刊最新文献
Enhanced relaxation-based local stabilization of T-S fuzzy systems: Achieving a simultaneous reduction in conservatism and complexity Deep–adaptive fuzzy predictive navigation framework for stable and intelligent mobile robot control Optimality in constrained fractional robust optimization problems The zero-dispersion regime of energy-critical fractional nonlinear equations Machine-learning-enhanced glowworm swarm optimization for energy-efficient multi-hop routing in wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1