{"title":"From structure to surface tension of small silicon clusters by Quantum Monte Carlo simulations","authors":"B.G.A. Brito , G.-Q. Hai , L. Cândido","doi":"10.1016/j.susc.2024.122507","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the structural, surface and electronic properties of small silicon clusters Si<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> (for <span><math><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></math></span> to 15) using HF, DFT and FN-DMC calculations. We analyze the atomic configurations, surface properties and electronic structures and show that the radius and average surface area of the clusters can be modeled by a Jellium-type model. We found that the surface tension <span><math><mi>σ</mi></math></span> of the clusters decreases with increasing cluster size in the range of the clusters under investigation. An estimate of the surface tension for bulk silicon yields <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>b</mi><mi>u</mi><mi>l</mi><mi>k</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>88</mn><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span> J/m<sup>2</sup> in agreement with recent experiments. The average bond length of the clusters shows a non-monotonic behavior. Smaller clusters exhibit a high spin state influenced by electron correlation, especially during the 2D to 3D structural transition, which occurs at <span><math><mrow><mi>n</mi><mo>=</mo><mn>4</mn></mrow></math></span> to <span><math><mrow><mi>n</mi><mo>=</mo><mn>5</mn></mrow></math></span>. We also find that the Si<sub>4</sub>, Si<sub>10</sub> and Si<sub>12</sub> clusters exhibit enhanced stability due to electron correlation. Our results are consistent with the experiments on bond length, binding energy and dissociation energy.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003960282400058X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the structural, surface and electronic properties of small silicon clusters Si (for to 15) using HF, DFT and FN-DMC calculations. We analyze the atomic configurations, surface properties and electronic structures and show that the radius and average surface area of the clusters can be modeled by a Jellium-type model. We found that the surface tension of the clusters decreases with increasing cluster size in the range of the clusters under investigation. An estimate of the surface tension for bulk silicon yields J/m2 in agreement with recent experiments. The average bond length of the clusters shows a non-monotonic behavior. Smaller clusters exhibit a high spin state influenced by electron correlation, especially during the 2D to 3D structural transition, which occurs at to . We also find that the Si4, Si10 and Si12 clusters exhibit enhanced stability due to electron correlation. Our results are consistent with the experiments on bond length, binding energy and dissociation energy.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.