首页 > 最新文献

Surface Science最新文献

英文 中文
VS2/graphene heterostructures as cathode materials for sodium-sulfur batteries: A first-principles study 作为钠硫电池阴极材料的 VS2/石墨烯异质结构:第一原理研究
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-09 DOI: 10.1016/j.susc.2024.122650
Jihong Li , Chengdong Wei , Jian Xu , Hongtao Xue , Fuling Tang
Sodium-sulfur batteries have garnered significant attention recently due to their high energy density. Nevertheless, the dissolution of sodium polysulfides in the electrolyte results in the shuttle effect, severely impacting the cycling efficiency of these batteries and limiting their widespread application. In this study, a novel two-dimensional VS2/ graphene heterostructure was designed. This material is used as an anchoring material for the anode of sodium-sulfur battery to suppress the shuttle effect. This van der Waals heterostructure is composed of graphene and VS2 stacked, and retains their inherent electronic structures. Graphene not only enhances the conductivity of sulfur cathode, but also improves the polarity of VS2 thin film. Adsorption simulations of sodium polysulfide showed that the VS2/graphene heterostructures possessed suitable adsorption energies in the range of 1.63 ∼ 3.47 eV, which were able to effectively anchor the polysulfide. In addition, the lower Na2S decomposition energy barriers and sodium ion migration energy barriers show the potential of the heterostructures in catalyzing the reaction kinetics. Therefore, the VS2/graphene heterostructure is anticipated to be an optimal anchoring material for sodium-sulfur batteries.
由于能量密度高,钠硫电池近来备受关注。然而,多硫化钠在电解液中的溶解会产生穿梭效应,严重影响这些电池的循环效率,限制了它们的广泛应用。本研究设计了一种新型二维 VS2/ 石墨烯异质结构。这种材料被用作钠硫电池阳极的锚定材料,以抑制穿梭效应。这种范德华异质结构由石墨烯和 VS2 堆叠而成,并保留了它们固有的电子结构。石墨烯不仅增强了硫阴极的导电性,还改善了 VS2 薄膜的极性。多硫化钠的吸附模拟显示,VS2/石墨烯异质结构具有合适的吸附能,范围在 1.63 ∼ 3.47 eV 之间,能够有效地锚定多硫化钠。此外,较低的 Na2S 分解能垒和钠离子迁移能垒显示了异质结构在催化反应动力学方面的潜力。因此,VS2/石墨烯异质结构有望成为钠硫电池的最佳锚定材料。
{"title":"VS2/graphene heterostructures as cathode materials for sodium-sulfur batteries: A first-principles study","authors":"Jihong Li ,&nbsp;Chengdong Wei ,&nbsp;Jian Xu ,&nbsp;Hongtao Xue ,&nbsp;Fuling Tang","doi":"10.1016/j.susc.2024.122650","DOIUrl":"10.1016/j.susc.2024.122650","url":null,"abstract":"<div><div>Sodium-sulfur batteries have garnered significant attention recently due to their high energy density. Nevertheless, the dissolution of sodium polysulfides in the electrolyte results in the shuttle effect, severely impacting the cycling efficiency of these batteries and limiting their widespread application. In this study, a novel two-dimensional VS<sub>2</sub>/ graphene heterostructure was designed. This material is used as an anchoring material for the anode of sodium-sulfur battery to suppress the shuttle effect. This van der Waals heterostructure is composed of graphene and VS<sub>2</sub> stacked, and retains their inherent electronic structures. Graphene not only enhances the conductivity of sulfur cathode, but also improves the polarity of VS<sub>2</sub> thin film. Adsorption simulations of sodium polysulfide showed that the VS<sub>2</sub>/graphene heterostructures possessed suitable adsorption energies in the range of 1.63 ∼ 3.47 eV, which were able to effectively anchor the polysulfide. In addition, the lower Na<sub>2</sub>S decomposition energy barriers and sodium ion migration energy barriers show the potential of the heterostructures in catalyzing the reaction kinetics. Therefore, the VS<sub>2</sub>/graphene heterostructure is anticipated to be an optimal anchoring material for sodium-sulfur batteries.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122650"},"PeriodicalIF":2.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of alloying elements (Ti, Zn, Zr, Al) on the interfacial properties of Cu/Ni2Si: A DFT study 合金元素(Ti、Zn、Zr、Al)对 Cu/Ni2Si 界面特性的影响:DFT 研究
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-09 DOI: 10.1016/j.susc.2024.122649
Qing Liu , Wenchao Jin , Fugong Qi , Shuaiqi Hua , Jinfeng Wang , Jiyu Zhou , Pengjie Wang , Xiangguang Kong , Haimin Ding
The addition of trace alloying elements to metal matrix composites has an important effect on their interfacial bonding properties and strength. In this study, the electronic structure, interfacial stability, and bonding properties of Cu/Ni2Si interfaces with doping alloying elements are systematically investigated on the atomic scale. It was found that the addition of alloying elements to the Cu side of the Cu(100)/Ni2Si(101)-Ni interface improved the interfacial stability, where Ti, Zn, Zr, and Al increased the interfacial work of adhesion from 2.53 J/m2 to 3.04 J/m2, 2.65 J/m2, 3.20 J/m2, and 2.82 J/m2, respectively. When alloying elements were doped in the sub-interfacial and third interfacial layers, only Zr enhances interfacial stability significantly. Analyses of interfacial and electronic structures show that Ti and Zr stabilize the Cu(100)/Ni2Si(101) interface through strong chemical bonds, while Zn and Al reduce interface distortion energy. The thermodynamic stability of the interface increases with higher doping rates. Moreover, increased adhesion tends to enhance the wettability of heterogeneous interfaces. At a 16.6% doping rate of the interfacial layer, Ti and Zr have the most significant effect on the contact angle, reducing it from 98.8° to 89.1° and 86.2°, respectively, thus promoting the wetting process.
在金属基复合材料中添加痕量合金元素对其界面结合性能和强度有重要影响。本研究在原子尺度上系统研究了掺杂合金元素的 Cu/Ni2Si 界面的电子结构、界面稳定性和结合性能。研究发现,在 Cu(100)/Ni2Si(101)-Ni 界面的 Cu 侧添加合金元素可提高界面稳定性,其中 Ti、Zn、Zr 和 Al 可使界面粘附功分别从 2.53 J/m2 增加到 3.04 J/m2、2.65 J/m2、3.20 J/m2 和 2.82 J/m2。在次界面层和第三界面层掺入合金元素时,只有 Zr 能显著提高界面稳定性。界面结构和电子结构分析表明,Ti 和 Zr 通过强化学键稳定了 Cu(100)/Ni2Si(101) 界面,而 Zn 和 Al 则降低了界面畸变能。界面的热力学稳定性随着掺杂率的提高而增加。此外,粘附力的增加往往会提高异质界面的润湿性。当界面层的掺杂率为 16.6% 时,Ti 和 Zr 对接触角的影响最大,分别从 98.8° 减小到 89.1° 和 86.2°,从而促进了润湿过程。
{"title":"Effect of alloying elements (Ti, Zn, Zr, Al) on the interfacial properties of Cu/Ni2Si: A DFT study","authors":"Qing Liu ,&nbsp;Wenchao Jin ,&nbsp;Fugong Qi ,&nbsp;Shuaiqi Hua ,&nbsp;Jinfeng Wang ,&nbsp;Jiyu Zhou ,&nbsp;Pengjie Wang ,&nbsp;Xiangguang Kong ,&nbsp;Haimin Ding","doi":"10.1016/j.susc.2024.122649","DOIUrl":"10.1016/j.susc.2024.122649","url":null,"abstract":"<div><div>The addition of trace alloying elements to metal matrix composites has an important effect on their interfacial bonding properties and strength. In this study, the electronic structure, interfacial stability, and bonding properties of Cu/Ni<sub>2</sub>Si interfaces with doping alloying elements are systematically investigated on the atomic scale. It was found that the addition of alloying elements to the Cu side of the Cu(100)/Ni<sub>2</sub>Si(101)-Ni interface improved the interfacial stability, where Ti, Zn, Zr, and Al increased the interfacial work of adhesion from 2.53 J/m<sup>2</sup> to 3.04 J/m<sup>2</sup>, 2.65 J/m<sup>2</sup>, 3.20 J/m<sup>2</sup>, and 2.82 J/m<sup>2</sup>, respectively. When alloying elements were doped in the sub-interfacial and third interfacial layers, only Zr enhances interfacial stability significantly. Analyses of interfacial and electronic structures show that Ti and Zr stabilize the Cu(100)/Ni<sub>2</sub>Si(101) interface through strong chemical bonds, while Zn and Al reduce interface distortion energy. The thermodynamic stability of the interface increases with higher doping rates. Moreover, increased adhesion tends to enhance the wettability of heterogeneous interfaces. At a 16.6% doping rate of the interfacial layer, Ti and Zr have the most significant effect on the contact angle, reducing it from 98.8° to 89.1° and 86.2°, respectively, thus promoting the wetting process.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122649"},"PeriodicalIF":2.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorbate-induced effects on the H− ion collisions with Na/Ag(111) and K/Ag(111) surfaces 吸附剂对 H 离子与 Na/Ag(111) 和 K/Ag(111) 表面碰撞的影响
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-08 DOI: 10.1016/j.susc.2024.122651
Bogdana Bahrim, Aaron Martinez, Jonah Watts
The H ion survival probabilities following on-top collisions with Na adsorbates deposited on Ag(111) at low coverage, are investigated for a wide range of exit angles from 20° to 90° measured from surface, and for various incident ion energies. A wave packet propagation approach is used in these calculations. The survival probabilities exhibit a series of well-defined peaks located at certain exit angles, that are indicative of avoided crossings between the various energy levels involved in the projectile/adsorbate/surface interaction. Both image states and the back-and-forth electronic motion between the ion projectile and the adsorbate/surface system contribute to the electronic population recaptured during the exit trajectory. For ion-surface collisions away from the on-top configuration, but in the close vicinity of adsorbates, a model is proposed to describe the variation of the H projectile's distance of closest approach to the adsorbate-covered Ag(111) surface in terms of the ion's impact point on surface, e.g., starting from the on-top collision with a single adsorbate and gradually moving away, towards the “clean” surface. The distance of closest approach is a key factor in calculating correctly the ion survival probabilities in the close region around the adsorbate, where the scattered ion fractions are affected the most. Results are shown for H in interaction with K/Ag(111).
针对从表面测量的 20° 至 90° 的大范围出口角以及各种入射离子能量,研究了与沉积在 Ag(111) 上的低覆盖率 Na 吸附物发生顶面碰撞后 H 离子的存活概率。这些计算采用了波包传播方法。存活概率在特定出射角处显示出一系列明确的峰值,这些峰值表明射弹/吸附剂/表面相互作用所涉及的各种能级之间避免了交叉。离子射弹和吸附剂/表面系统之间的图像状态和来回电子运动都有助于在出轨过程中重新捕获电子群。对于远离顶部构型但靠近吸附剂的离子-表面碰撞,提出了一个模型来描述 H-射弹与吸附剂覆盖的 Ag(111) 表面的最近接近距离的变化,该模型以离子在表面上的撞击点为基础,例如,从与单一吸附剂的顶部碰撞开始,逐渐远离,直至 "干净 "的表面。最近接近距离是正确计算离子在吸附剂周围近距离区域存活概率的关键因素,在该区域散射离子分数受到的影响最大。结果显示了 H- 与 K/Ag(111) 的相互作用。
{"title":"Adsorbate-induced effects on the H− ion collisions with Na/Ag(111) and K/Ag(111) surfaces","authors":"Bogdana Bahrim,&nbsp;Aaron Martinez,&nbsp;Jonah Watts","doi":"10.1016/j.susc.2024.122651","DOIUrl":"10.1016/j.susc.2024.122651","url":null,"abstract":"<div><div>The <em>H</em><sup>−</sup> ion survival probabilities following on-top collisions with Na adsorbates deposited on Ag(111) at low coverage, are investigated for a wide range of exit angles from 20° to 90° measured from surface, and for various incident ion energies. A wave packet propagation approach is used in these calculations. The survival probabilities exhibit a series of well-defined peaks located at certain exit angles, that are indicative of avoided crossings between the various energy levels involved in the projectile/adsorbate/surface interaction. Both image states and the back-and-forth electronic motion between the ion projectile and the adsorbate/surface system contribute to the electronic population recaptured during the exit trajectory. For ion-surface collisions away from the on-top configuration, but in the close vicinity of adsorbates, a model is proposed to describe the variation of the <em>H</em><sup>−</sup> projectile's distance of closest approach to the adsorbate-covered Ag(111) surface in terms of the ion's impact point on surface, e.g., starting from the on-top collision with a single adsorbate and gradually moving away, towards the “clean” surface. The distance of closest approach is a key factor in calculating correctly the ion survival probabilities in the close region around the adsorbate, where the scattered ion fractions are affected the most. Results are shown for <em>H</em><sup>−</sup> in interaction with K/Ag(111).</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122651"},"PeriodicalIF":2.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One century of evolution of surface science, a personal perspective 表面科学的百年演变,个人视角
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-08 DOI: 10.1016/j.susc.2024.122636
Miquel B. Salmeron, Xiao Zhao
Compared to the bulk, surfaces of materials usually exhibit unique chemical, structural and electronic properties due to their distinct interactions with the external phase, such as vacuum, gas, liquid or another solid. Breakthroughs in this field are typically driven by significant instrumental development. In this review we will highlight a few developments in surface science in the last 40 years, as well as the discoveries they brought to the scientific and engineering communities. These findings, together with relevant technical developments, enable a deeper understanding of phenomena critical to catalysis, energy conversion, and nanotechnology.
与块体相比,材料表面由于与真空、气体、液体或另一种固体等外相的独特相互作用,通常表现出独特的化学、结构和电子特性。这一领域的突破通常是由重要仪器的发展推动的。在本综述中,我们将重点介绍过去 40 年中表面科学的一些发展,以及这些发展为科学和工程界带来的发现。这些发现以及相关的技术发展,使我们能够更深入地了解对催化、能源转换和纳米技术至关重要的现象。
{"title":"One century of evolution of surface science, a personal perspective","authors":"Miquel B. Salmeron,&nbsp;Xiao Zhao","doi":"10.1016/j.susc.2024.122636","DOIUrl":"10.1016/j.susc.2024.122636","url":null,"abstract":"<div><div>Compared to the bulk, surfaces of materials usually exhibit unique chemical, structural and electronic properties due to their distinct interactions with the external phase, such as vacuum, gas, liquid or another solid. Breakthroughs in this field are typically driven by significant instrumental development. In this review we will highlight a few developments in surface science in the last 40 years, as well as the discoveries they brought to the scientific and engineering communities. These findings, together with relevant technical developments, enable a deeper understanding of phenomena critical to catalysis, energy conversion, and nanotechnology.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122636"},"PeriodicalIF":2.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel MoS2/Pd5 nanocluster heterojunction system with improved surface reactivity for efficient gas sensing: A DFT study 一种新型 MoS2/Pd5 纳米簇异质结系统,具有更好的表面活性,可用于高效气体传感:DFT 研究
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-06 DOI: 10.1016/j.susc.2024.122648
Khalid Mujasam Batoo , Iman Samir Alalaq , Rekha MM , Anurag Mishra , Shilpa Sharma , G.V. Siva Prasad , Muhammad Farzik Ijaz , Salima B. Alsaadi , Ahmed Ali Mtasher , Fadeel F. Seed
Our work has reflected considerable interest in unique Pd nanocluster/MoS2 heterojunction systems due to their potential applications in materials science, chemistry and physics. We focused on exploiting Pd5/MoS2 nanocluster system, a novel heterojunction material for gas sensing applications. In addition, we exploited the electronic properties of Pd dopant on the MoS2 surface to make a comparative study. Our DFT calculations indicate that the Pd5/MoS2 heterojunction structure exhibits a higher affinity for adsorbing gas molecules such as CO, NH3, NO, and NO2, while the perfect MoS2 shows weak gas adsorption capacity. Pd5/MoS2 heterojunction exhibits semiconducting feature with a weakened and narrower band gap, making it more suitable for gas sensing due to its higher conductivity. We analyzed important factors like adsorption distance/energies, density of states, band structure and difference of electron density concerning adsorbed gases on the heterojunction surface. Based on the electron density difference maps, we can see the giant growth of charges over the adsorbed molecules, as well as between the adsorbing atoms. Based on our findings, the conductivity of the nanomaterial undergoes a remarkable change, which helps reinforce the applicability of the Pd5/MoS2 heterojunction nanosystem in sensing and adsorbing gas molecules.
由于独特的 Pd 纳米簇/MoS2 异质结系统在材料科学、化学和物理学中的潜在应用,我们的工作反映了人们对这种系统的浓厚兴趣。我们重点研究了 Pd5/MoS2 纳米簇系统,这是一种用于气体传感应用的新型异质结材料。此外,我们还对 MoS2 表面掺杂钯的电子特性进行了比较研究。我们的 DFT 计算表明,Pd5/MoS2 异质结结构对 CO、NH3、NO 和 NO2 等气体分子具有更高的吸附亲和力,而完美的 MoS2 对气体的吸附能力较弱。Pd5/MoS2 异质结具有半导体特性,带隙减弱且更窄,因此具有更高的导电性,更适用于气体传感。我们分析了异质结表面吸附气体的吸附距离/能量、态密度、带结构和电子密度差等重要因素。根据电子密度差图,我们可以看到吸附分子上以及吸附原子间电荷的巨大增长。根据我们的研究结果,纳米材料的电导率发生了显著变化,这有助于加强 Pd5/MoS2 异质结纳米系统在传感和吸附气体分子方面的适用性。
{"title":"A novel MoS2/Pd5 nanocluster heterojunction system with improved surface reactivity for efficient gas sensing: A DFT study","authors":"Khalid Mujasam Batoo ,&nbsp;Iman Samir Alalaq ,&nbsp;Rekha MM ,&nbsp;Anurag Mishra ,&nbsp;Shilpa Sharma ,&nbsp;G.V. Siva Prasad ,&nbsp;Muhammad Farzik Ijaz ,&nbsp;Salima B. Alsaadi ,&nbsp;Ahmed Ali Mtasher ,&nbsp;Fadeel F. Seed","doi":"10.1016/j.susc.2024.122648","DOIUrl":"10.1016/j.susc.2024.122648","url":null,"abstract":"<div><div>Our work has reflected considerable interest in unique Pd nanocluster/MoS<sub>2</sub> heterojunction systems due to their potential applications in materials science, chemistry and physics. We focused on exploiting Pd<sub>5</sub>/MoS<sub>2</sub> nanocluster system, a novel heterojunction material for gas sensing applications. In addition, we exploited the electronic properties of Pd dopant on the MoS<sub>2</sub> surface to make a comparative study. Our DFT calculations indicate that the Pd<sub>5</sub>/MoS<sub>2</sub> heterojunction structure exhibits a higher affinity for adsorbing gas molecules such as CO, NH<sub>3</sub>, NO, and NO<sub>2</sub>, while the perfect MoS<sub>2</sub> shows weak gas adsorption capacity. Pd<sub>5</sub>/MoS<sub>2</sub> heterojunction exhibits semiconducting feature with a weakened and narrower band gap, making it more suitable for gas sensing due to its higher conductivity. We analyzed important factors like adsorption distance/energies, density of states, band structure and difference of electron density concerning adsorbed gases on the heterojunction surface. Based on the electron density difference maps, we can see the giant growth of charges over the adsorbed molecules, as well as between the adsorbing atoms. Based on our findings, the conductivity of the nanomaterial undergoes a remarkable change, which helps reinforce the applicability of the Pd<sub>5</sub>/MoS<sub>2</sub> heterojunction nanosystem in sensing and adsorbing gas molecules.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122648"},"PeriodicalIF":2.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study of Cl adsorption on Pt(111) and Pt(100) using Ab Initio Grand-canonical Monte Carlo 利用 Ab Initio 大规范蒙特卡洛对 Cl 在 Pt(111) 和 Pt(100) 上的吸附进行研究
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-03 DOI: 10.1016/j.susc.2024.122647
Eun Mi Kim, Junseok Kim, Kristen A. Fichthorn
We used ab initio grand-canonical Monte Carlo (AIGCMC) simulations based on plane-wave density-functional theory to probe the structures and surface energies of Pt(100) and Pt(111) with adsorbed chlorine. For Pt(100), we considered both the (1 × 1) surface and a (5 × 1) reconstruction, as a model for the experimentally observed “hex” reconstruction of Pt(100). We constructed phase diagrams of the surface energies as function of the Cl chemical potential and identified the most relevant surfaces. For Pt(100), we find the hex reconstruction is favored at low Cl chemical potentials and that Cl adsorption lifts the reconstruction. The progression of ordered structures predicted for this surface is: bare (5 × 1) Pt(100), Θ = 1/2 (1 × 1) Pt(100), and Θ = 2/3 (1 × 1) Pt(100), where Θ is the fractional surface coverage of Cl. All these structures are seen experimentally. We also observe a structure with Θ = 3/4 and intermixing between Pt and Cl on Pt(100) that is related to the structure at Θ = 2/3. For Pt(111), we find a progression of (3 × 3) unit cells at Θ = 1/9, 1/3, 4/9, 5/9, and 2/3. The structures at Θ = 1/3 and 4/9 have been proposed experimentally and most experiments predict a series of (3 × 3) unit cells with increasing Cl coverage. If intermixing between Cl and Pt does not occur in experiment, then we find a (4 × 2) Cl structure at Θ = 1/2 is energetically favored, as is observed in experiment. A strength of AIGCMC is the capability to identify relevant structures, including disordered structures, without predefined input. This increases the chance of having high fidelity to experiment and identifying relevant substrates for applications.
我们利用基于平面波密度泛函理论的 ab initio grand-canonical Monte Carlo (AIGCMC) 模拟来探究吸附了氯的 Pt(100) 和 Pt(111) 的结构和表面能。对于 Pt(100),我们考虑了(1 × 1)表面和(5 × 1)重构,作为实验观察到的 Pt(100) "六边形 "重构的模型。我们构建了表面能与 Cl 化学势函数的相图,并确定了最相关的表面。对于 Pt(100),我们发现六边形重构在 Cl 化学势较低时更有利,而 Cl 吸附会提升重构。预测该表面的有序结构顺序为:裸(5 × 1)Pt(100)、Θ = 1/2 (1 × 1) Pt(100)和 Θ = 2/3 (1 × 1) Pt(100),其中 Θ 是 Cl 的部分表面覆盖率。所有这些结构都可以在实验中看到。我们还在 Pt(100) 上观察到一种 Θ = 3/4 的结构以及 Pt 和 Cl 之间的混合结构,这种结构与 Θ = 2/3 时的结构有关。对于 Pt(111),我们在 Θ = 1/9、1/3、4/9、5/9 和 2/3 处发现了 (3 × 3) 单元格的递变。Θ = 1/3 和 4/9 时的结构是通过实验提出的,大多数实验预测随着 Cl 覆盖率的增加,会出现一系列 (3 × 3) 单元。如果在实验中没有发生 Cl 和 Pt 之间的混合,那么我们发现在 Θ = 1/2 处的 (4 × 2) Cl 结构在能量上更受欢迎,这与实验中观察到的情况相同。AIGCMC 的优势之一是能够在没有预定输入的情况下识别相关结构,包括无序结构。这增加了实验的高保真度和识别相关应用底物的机会。
{"title":"A study of Cl adsorption on Pt(111) and Pt(100) using Ab Initio Grand-canonical Monte Carlo","authors":"Eun Mi Kim,&nbsp;Junseok Kim,&nbsp;Kristen A. Fichthorn","doi":"10.1016/j.susc.2024.122647","DOIUrl":"10.1016/j.susc.2024.122647","url":null,"abstract":"<div><div>We used <em>ab initio</em> grand-canonical Monte Carlo (AIGCMC) simulations based on plane-wave density-functional theory to probe the structures and surface energies of Pt(100) and Pt(111) with adsorbed chlorine. For Pt(100), we considered both the (1 × 1) surface and a (5 × 1) reconstruction, as a model for the experimentally observed “hex” reconstruction of Pt(100). We constructed phase diagrams of the surface energies as function of the Cl chemical potential and identified the most relevant surfaces. For Pt(100), we find the hex reconstruction is favored at low Cl chemical potentials and that Cl adsorption lifts the reconstruction. The progression of ordered structures predicted for this surface is: bare (5 × 1) Pt(100), Θ = 1/2 (1 × 1) Pt(100), and Θ = 2/3 (1 × 1) Pt(100), where Θ is the fractional surface coverage of Cl. All these structures are seen experimentally. We also observe a structure with Θ = 3/4 and intermixing between Pt and Cl on Pt(100) that is related to the structure at Θ = 2/3. For Pt(111), we find a progression of (3 × 3) unit cells at Θ = 1/9, 1/3, 4/9, 5/9, and 2/3. The structures at Θ = 1/3 and 4/9 have been proposed experimentally and most experiments predict a series of (3 × 3) unit cells with increasing Cl coverage. If intermixing between Cl and Pt does not occur in experiment, then we find a (4 × 2) Cl structure at Θ = 1/2 is energetically favored, as is observed in experiment. A strength of AIGCMC is the capability to identify relevant structures, including disordered structures, without predefined input. This increases the chance of having high fidelity to experiment and identifying relevant substrates for applications.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122647"},"PeriodicalIF":2.1,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abnormal adsorption of lithium on the graphene surface of graphene/dT(H)-MoS2 heterostructures 石墨烯/dT(H)-MoS2 异质结构的石墨烯表面对锂的异常吸附
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-01 DOI: 10.1016/j.susc.2024.122646
Rui Yang, Xiao-Huan Lv, Ke-Xin Hou, Xing-Qiang Shi, Jiang-Long Wang
The graphene/MoS2 heterostructures (Gr/MoS2) exhibit excellent performance for ion batteries, such as superior stability and cyclicity for ion battery storage, and have great potentials for other applications. Lithium (Li) adsorption on/in Gr/MoS2 heterostructures exhibits advanced properties and interesting phenomena, as well as the phase engineering of MoS2. However, unified understanding for the different adsorption behaviors remains lacking, although fully understanding to the adsorption behaviors is of vital importance for their applications. In the current work, the Li adsorptions on the Gr surface of Gr/dT(H)-MoS2 heterostructures are systematically analyzed based on density functional theory calculations, and highlight the differences between Gr/H-MoS2 and Gr/dT-MoS2 for Li adsorption. To fully understand the adsorption behaviors, we perform detailed analyses from four interrelated aspects: 1) Electrostatic interactions from detailed Bader charge analysis, 2) charge density difference Δρ(z), 3) energy-level alignment between Li and the band edges of Gr, dT-, and H-MoS2, and 4) the resulted interface dipoles. We find that partial electrons in Li can pass through Gr to H-MoS2 and the origin is attributed to the weak electronic-shielding of Gr (even weaker than H-MoS2). All of the above extended analysis not only enables us to understand the abnormal adsorption of Li on the Gr surface of Gr/dT(H)-MoS2 heterostructures, but also helps guide the selection of ion battery materials. Moreover, we extend the discussion of Li adsorption to other alkali metal atoms with smaller work functions (such as: Na and K). Our work not only provides understanding to the abnormal adsorption of Li on the Gr surface of Gr/dT(H)-MoS2 heterostructures, but also helps guide the selection of ion battery materials. So, the insights from this study are important for their related applications. This paper reveals and explains an interesting abnormal adsorption phenomenon of lithium on van der Waals heterostructures of graphene and different phases of MoS2.The conclusion and insights from this work is not limited to Li (applicable at least to Na and K, also), and hence our work is helpful for establishing the surface-adsorption mechanisms of ion batteries.
石墨烯/MoS2 异质结构(Gr/MoS2)在离子电池方面表现出卓越的性能,例如在离子电池存储方面具有超强的稳定性和循环性,在其他应用方面也具有巨大的潜力。锂(Li)在 Gr/MoS2 异质结构上的吸附表现出先进的性能和有趣的现象,以及 MoS2 的相工程。然而,尽管充分了解吸附行为对其应用至关重要,但对不同吸附行为仍缺乏统一的认识。在目前的工作中,基于密度泛函理论计算,系统分析了 Gr/dT(H)-MoS2 异质结构的 Gr 表面对锂的吸附,并强调了 Gr/H-MoS2 和 Gr/dT-MoS2 对锂吸附的差异。为了充分理解吸附行为,我们从四个相互关联的方面进行了详细分析:1) 通过详细的 Bader 电荷分析得出的静电相互作用;2) 电荷密度差 Δρ(z);3) Li 与 Gr、dT- 和 H-MoS2 带边之间的能级排列;以及 4) 由此产生的界面偶极子。我们发现,Li 中的部分电子可以穿过 Gr 到达 H-MoS2,其原因在于 Gr 的弱电子屏蔽(甚至比 H-MoS2 更弱)。上述所有扩展分析不仅使我们能够理解锂在 Gr/dT(H)-MoS2 异质结构的 Gr 表面的异常吸附,而且有助于指导离子电池材料的选择。此外,我们还将锂吸附的讨论扩展到了功函数较小的其他碱金属原子(如 Na 和 K)。我们的工作不仅有助于理解锂在 Gr/dT(H)-MoS2 异质结构的 Gr 表面的异常吸附,还有助于指导离子电池材料的选择。因此,本研究的见解对其相关应用具有重要意义。本文揭示并解释了锂在石墨烯和不同相 MoS2 的范德华异质结构上的一种有趣的异常吸附现象。这项工作的结论和见解不仅限于锂(至少也适用于 Na 和 K),因此我们的工作有助于建立离子电池的表面吸附机制。
{"title":"Abnormal adsorption of lithium on the graphene surface of graphene/dT(H)-MoS2 heterostructures","authors":"Rui Yang,&nbsp;Xiao-Huan Lv,&nbsp;Ke-Xin Hou,&nbsp;Xing-Qiang Shi,&nbsp;Jiang-Long Wang","doi":"10.1016/j.susc.2024.122646","DOIUrl":"10.1016/j.susc.2024.122646","url":null,"abstract":"<div><div>The graphene/MoS<sub>2</sub> heterostructures (Gr/MoS<sub>2</sub>) exhibit excellent performance for ion batteries, such as superior stability and cyclicity for ion battery storage, and have great potentials for other applications. Lithium (Li) adsorption on/in Gr/MoS<sub>2</sub> heterostructures exhibits advanced properties and interesting phenomena, as well as the phase engineering of MoS<sub>2</sub>. However, unified understanding for the different adsorption behaviors remains lacking, although fully understanding to the adsorption behaviors is of vital importance for their applications. In the current work, the Li adsorptions on the Gr surface of Gr/dT(H)-MoS<sub>2</sub> heterostructures are systematically analyzed based on density functional theory calculations, and highlight the differences between Gr/H-MoS<sub>2</sub> and Gr/dT-MoS<sub>2</sub> for Li adsorption. To fully understand the adsorption behaviors, we perform detailed analyses from four interrelated aspects: 1) Electrostatic interactions from detailed Bader charge analysis, 2) charge density difference Δρ(<em>z</em>), 3) energy-level alignment between Li and the band edges of Gr, dT-, and H-MoS<sub>2</sub>, and 4) the resulted interface dipoles. We find that partial electrons in Li can pass through Gr to H-MoS<sub>2</sub> and the origin is attributed to the weak electronic-shielding of Gr (even weaker than H-MoS<sub>2</sub>). All of the above extended analysis not only enables us to understand the abnormal adsorption of Li on the Gr surface of Gr/dT(H)-MoS<sub>2</sub> heterostructures, but also helps guide the selection of ion battery materials. Moreover, we extend the discussion of Li adsorption to other alkali metal atoms with smaller work functions (such as: Na and K). Our work not only provides understanding to the abnormal adsorption of Li on the Gr surface of Gr/dT(H)-MoS<sub>2</sub> heterostructures, but also helps guide the selection of ion battery materials. So, the insights from this study are important for their related applications. This paper reveals and explains an interesting abnormal adsorption phenomenon of lithium on van der Waals heterostructures of graphene and different phases of MoS<sub>2</sub>.The conclusion and insights from this work is not limited to Li (applicable at least to Na and K, also), and hence our work is helpful for establishing the surface-adsorption mechanisms of ion batteries.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122646"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
X-ray and photoelectron spectroscopy of surface chemistry; from bonding via femtosecond to operando 表面化学的 X 射线和光电子能谱学;从飞秒成键到运算量
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-29 DOI: 10.1016/j.susc.2024.122637
Anders Nilsson
For the 60th anniversary of Surface Science, I present here a personal account of some of the most significant contributions I have made to the field over the past three decades. The utilisation of X-rays serves as the foundation for these studies, encompassing X-ray spectroscopy for the mapping of surface chemical bonds, probing of surface reactions on ultrafast timescales, and X-ray photoelectron spectroscopy under operando conditions. The direct projection of electronic states onto the adsorbed atom allowed the detection of bonding and anti-bonding states within the d-band model. The selective probing of orbitals of different symmetries on the two atoms in adsorbed N2 provided a fundamental understanding of the nature of diatomic bonding to surfaces. Ultrafast optical pumping and X-ray laser techniques allowed the study of CO undergoing desorption leading to the observation of the precursor state. Pump-probed studies of co-adsorbed CO and O on Ru enabled the means to detect transition state species during catalytic CO oxidation. The use of operando X-ray photoelectron spectroscopy at near-atmospheric pressures opened the door to probe the surface chemistry and gain insight into the reaction mechanism during hydrogenation reactions to produce ammonia, hydrocarbons, methanol and ethanol. By inserting an electrochemical cell into the spectroscopic chamber, both fuel cell and water splitting electrocatalysis could be studied giving insight about the reaction mechanism.
值此《表面科学》杂志创刊 60 周年之际,我在此以个人名义介绍了过去三十年来我在该领域做出的一些最重要的贡献。X 射线的利用是这些研究的基础,其中包括用于绘制表面化学键的 X 射线光谱、超快时间尺度的表面反应探测以及操作条件下的 X 射线光电子能谱。通过将电子状态直接投射到吸附原子上,可以探测到 d 带模型中的成键和反键状态。通过对吸附 N2 的两个原子上不同对称性轨道的选择性探测,可以从根本上了解硅原子与表面成键的性质。通过超快光学泵浦和 X 射线激光技术,可以研究 CO 的解吸过程,从而观察到前驱体状态。通过对 Ru 上共吸附的 CO 和 O 的泵探研究,可以检测催化 CO 氧化过程中的过渡态物种。在接近大气压的条件下使用操作型 X 射线光电子能谱,为探测表面化学性质和深入了解氢化反应过程中产生氨、碳氢化合物、甲醇和乙醇的反应机制打开了大门。通过在光谱室中插入一个电化学电池,可以对燃料电池和水分离电催化进行研究,从而深入了解反应机理。
{"title":"X-ray and photoelectron spectroscopy of surface chemistry; from bonding via femtosecond to operando","authors":"Anders Nilsson","doi":"10.1016/j.susc.2024.122637","DOIUrl":"10.1016/j.susc.2024.122637","url":null,"abstract":"<div><div>For the 60th anniversary of Surface Science, I present here a personal account of some of the most significant contributions I have made to the field over the past three decades. The utilisation of X-rays serves as the foundation for these studies, encompassing X-ray spectroscopy for the mapping of surface chemical bonds, probing of surface reactions on ultrafast timescales, and X-ray photoelectron spectroscopy under operando conditions. The direct projection of electronic states onto the adsorbed atom allowed the detection of bonding and anti-bonding states within the d-band model. The selective probing of orbitals of different symmetries on the two atoms in adsorbed N<sub>2</sub> provided a fundamental understanding of the nature of diatomic bonding to surfaces. Ultrafast optical pumping and X-ray laser techniques allowed the study of CO undergoing desorption leading to the observation of the precursor state. Pump-probed studies of co-adsorbed CO and O on Ru enabled the means to detect transition state species during catalytic CO oxidation. The use of operando X-ray photoelectron spectroscopy at near-atmospheric pressures opened the door to probe the surface chemistry and gain insight into the reaction mechanism during hydrogenation reactions to produce ammonia, hydrocarbons, methanol and ethanol. By inserting an electrochemical cell into the spectroscopic chamber, both fuel cell and water splitting electrocatalysis could be studied giving insight about the reaction mechanism.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122637"},"PeriodicalIF":2.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorption and sensing performances of transition metal doped ZnO monolayer for CO and NO: A DFT study 掺杂过渡金属的氧化锌单层对 CO 和 NO 的吸附和传感性能:DFT 研究
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-28 DOI: 10.1016/j.susc.2024.122635
Hongliang Tang , Ying Duan , Xu Yang , Jing Wang , Yuyang Wang
In this study, theoretically, density functional theory was employed to explore the adsorption behavior of CO and NO prevalent hazardouss gases, on transition metal (TM = Fe, Co, Ni, and Cu) doped ZnO monolayer. The multifaceted analysis encompasses an array of critical aspects, including the adsorption structure, adsorption energy, density of states (DOS) and electron transfer to unravel the adsorption behavior. Our calculations show that TM atom doped ZnO monolayer exhibit high stability. TM doped can significantly enhance the interaction between the gas molecules (CO and NO) and the ZnO monolayer. Analysis of the recovery time and electrical conductivity of the adsorbed systems suggests that the Co-ZnO could be a suitable material for CO sensing,while the Cu-ZnO and Ni-ZnO can be used for NO sensing. These results suggest that transition metal doped can be a promising sensor candidate for toxic gas molecules adsorption and detection.
本研究采用密度泛函理论从理论上探讨了一氧化碳和一氧化氮这两种常见有害气体在掺杂过渡金属(TM = 铁、钴、镍和铜)的氧化锌单层上的吸附行为。多方面的分析涵盖了一系列关键方面,包括吸附结构、吸附能、状态密度(DOS)和电子转移,从而揭示了吸附行为。我们的计算表明,掺杂 TM 原子的氧化锌单层具有很高的稳定性。掺杂 TM 能显著增强气体分子(CO 和 NO)与氧化锌单层之间的相互作用。对吸附体系的恢复时间和电导率的分析表明,Co-ZnO 是一种适用于 CO 传感的材料,而 Cu-ZnO 和 Ni-ZnO 则可用于 NO 传感。这些结果表明,掺杂过渡金属可以成为吸附和检测有毒气体分子的理想传感器候选材料。
{"title":"Adsorption and sensing performances of transition metal doped ZnO monolayer for CO and NO: A DFT study","authors":"Hongliang Tang ,&nbsp;Ying Duan ,&nbsp;Xu Yang ,&nbsp;Jing Wang ,&nbsp;Yuyang Wang","doi":"10.1016/j.susc.2024.122635","DOIUrl":"10.1016/j.susc.2024.122635","url":null,"abstract":"<div><div>In this study, theoretically, density functional theory was employed to explore the adsorption behavior of CO and NO prevalent hazardouss gases, on transition metal (TM = Fe, Co, Ni, and Cu) doped ZnO monolayer. The multifaceted analysis encompasses an array of critical aspects, including the adsorption structure, adsorption energy, density of states (DOS) and electron transfer to unravel the adsorption behavior. Our calculations show that TM atom doped ZnO monolayer exhibit high stability. TM doped can significantly enhance the interaction between the gas molecules (CO and NO) and the ZnO monolayer. Analysis of the recovery time and electrical conductivity of the adsorbed systems suggests that the Co-ZnO could be a suitable material for CO sensing,while the Cu-ZnO and Ni-ZnO can be used for NO sensing. These results suggest that transition metal doped can be a promising sensor candidate for toxic gas molecules adsorption and detection.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122635"},"PeriodicalIF":2.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of B-C-N nanosheets on Rh(111) from benzene – borazine mixtures 利用苯-硼嗪混合物在 Rh(111) 上制备 B-C-N 纳米薄片
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-24 DOI: 10.1016/j.susc.2024.122633
László Óvári , Gábor Vári , Máté Farkas , Gyula Halasi , Nikolett Oláh , Csaba Vass , Arnold P. Farkas , András Berkó , János Kiss , Zoltán Kónya
Atomic level studies of solid state surfaces performed in ultra-high vacuum (UHV) had already an energetic 15–20 years past when our research group in Szeged started working in this field in mid 1970s. Till then several very important methods had been developed, like UHV technology, commercially available electron and photoelectron spectroscopy techniques, etc. Characterization of metal and semiconductor (oxide) surfaces and their adsorption properties had already been widely studied. In any case, the last 40–50 years also witnessed great discoveries and exciting new techniques. Considering only the activity related to heterogeneous catalysis, the main focus of our research group, new breakthrough methods emerged like HREELS, RAIRS, SPM, NAPXPS, EXAFS, NEXAFS. Along this path, new experimental and theoretical approaches appeared like planar model catalysts and inverse catalysts, atomic level investigation and understanding of surface diffusion-controlled phenomena (particle growth and disruption, strong metal-support interaction (SMSI), decoration, spillover), atomic level identification of active sites, self-organized nano-systems, surface alloys and nanotemplates. It was great to participate in this magical activity for more than 50 years. Both internationally and locally in Szeged, in the last two decades, surface science has opened to the wide world of 2D materials like the semimetal graphene and the insulator hexagonal boron nitride. However, the formation of a mixed layer of C, B and N proved to be a difficult task due to the primary tendency for phase separation. In the present work, we report on a preparation method of honeycomb “BCN” materials on Rh(111) by using benzene/borazine mixtures as precursors. It was demonstrated that by a suitable choice of the growth parameters, the formation of large, separated graphene and h-BN islands can be avoided.
20 世纪 70 年代中期,当我们在塞格德的研究小组开始在超高真空(UHV)下对固体表面进行原子级研究时,已经过去了 15-20 年。在此之前,已经开发出了几种非常重要的方法,如超高真空技术、商用电子和光电子能谱技术等。对金属和半导体(氧化物)表面的特征及其吸附特性的研究已经非常广泛。无论如何,在过去的 40-50 年间,我们也见证了许多重大发现和令人振奋的新技术。仅考虑到与我们研究小组主要关注的异相催化相关的活动,就出现了新的突破性方法,如 HREELS、RAIRS、SPM、NAPXPS、EXAFS 和 NEXAFS。沿着这条道路,出现了新的实验和理论方法,如平面模型催化剂和反催化剂、原子级研究和理解表面扩散控制现象(颗粒生长和破坏、强金属-支撑相互作用(SMSI)、装饰、溢出)、活性位点的原子级识别、自组织纳米系统、表面合金和纳米模板。能够参与这项神奇的活动已有 50 多年,我感到非常高兴。在过去的二十年里,无论是在国际上还是在塞格德本地,表面科学都为诸如半金属石墨烯和绝缘体六方氮化硼等二维材料打开了广阔的世界。然而,由于相分离的主要趋势,C、B 和 N 混合层的形成被证明是一项艰巨的任务。在本研究中,我们报告了一种以苯/硼嗪混合物为前驱体在 Rh(111) 上制备蜂窝状 "BCN "材料的方法。结果表明,通过适当选择生长参数,可以避免形成大的、分离的石墨烯和 h-BN 岛。
{"title":"Fabrication of B-C-N nanosheets on Rh(111) from benzene – borazine mixtures","authors":"László Óvári ,&nbsp;Gábor Vári ,&nbsp;Máté Farkas ,&nbsp;Gyula Halasi ,&nbsp;Nikolett Oláh ,&nbsp;Csaba Vass ,&nbsp;Arnold P. Farkas ,&nbsp;András Berkó ,&nbsp;János Kiss ,&nbsp;Zoltán Kónya","doi":"10.1016/j.susc.2024.122633","DOIUrl":"10.1016/j.susc.2024.122633","url":null,"abstract":"<div><div>Atomic level studies of solid state surfaces performed in ultra-high vacuum (UHV) had already an energetic 15–20 years past when our research group in Szeged started working in this field in mid 1970s. Till then several very important methods had been developed, like UHV technology, commercially available electron and photoelectron spectroscopy techniques, etc. Characterization of metal and semiconductor (oxide) surfaces and their adsorption properties had already been widely studied. In any case, the last 40–50 years also witnessed great discoveries and exciting new techniques. Considering only the activity related to heterogeneous catalysis, the main focus of our research group, new breakthrough methods emerged like HREELS, RAIRS, SPM, NAPXPS, EXAFS, NEXAFS. Along this path, new experimental and theoretical approaches appeared like planar model catalysts and inverse catalysts, atomic level investigation and understanding of surface diffusion-controlled phenomena (particle growth and disruption, strong metal-support interaction (SMSI), decoration, spillover), atomic level identification of active sites, self-organized nano-systems, surface alloys and nanotemplates. It was great to participate in this magical activity for more than 50 years. Both internationally and locally in Szeged, in the last two decades, surface science has opened to the wide world of 2D materials like the semimetal graphene and the insulator hexagonal boron nitride. However, the formation of a mixed layer of C, B and N proved to be a difficult task due to the primary tendency for phase separation. In the present work, we report on a preparation method of honeycomb “BCN” materials on Rh(111) by using benzene/borazine mixtures as precursors. It was demonstrated that by a suitable choice of the growth parameters, the formation of large, separated graphene and h-BN islands can be avoided.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"751 ","pages":"Article 122633"},"PeriodicalIF":2.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Surface Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1