Firdaus Parveen, Nick Watson, Abbie M. Scholes, Anna G. Slater
{"title":"Continuous flow as an enabling technology for sustainable supramolecular chemistry","authors":"Firdaus Parveen, Nick Watson, Abbie M. Scholes, Anna G. Slater","doi":"10.1016/j.cogsc.2024.100935","DOIUrl":null,"url":null,"abstract":"<div><p>Supramolecular chemistry exploits non-covalent intramolecular interactions to form structures such as host-guest complexes and crystalline porous materials. Supramolecular materials have potential for applications in a future sustainable society, such as energy-efficient separation, pollution remediation, or energy storage, but their production frequently relies on unsustainable methods. Flow chemistry is a technique that offers opportunities for ‘greener’ synthesis and that has recently found use in the supramolecular field. This review highlights recent examples to illustrate how flow chemistry can benefit the supramolecular chemist in terms of sustainability, process control, optimisation, and scale, ultimately providing viable routes to applications.</p></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"48 ","pages":"Article 100935"},"PeriodicalIF":9.3000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452223624000567/pdfft?md5=e1aa7d4ba5d16c950b6b87933709bd8d&pid=1-s2.0-S2452223624000567-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452223624000567","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Supramolecular chemistry exploits non-covalent intramolecular interactions to form structures such as host-guest complexes and crystalline porous materials. Supramolecular materials have potential for applications in a future sustainable society, such as energy-efficient separation, pollution remediation, or energy storage, but their production frequently relies on unsustainable methods. Flow chemistry is a technique that offers opportunities for ‘greener’ synthesis and that has recently found use in the supramolecular field. This review highlights recent examples to illustrate how flow chemistry can benefit the supramolecular chemist in terms of sustainability, process control, optimisation, and scale, ultimately providing viable routes to applications.
期刊介绍:
The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.