{"title":"Measurability of quality characteristics identified in latent spaces of Generative AI Models","authors":"","doi":"10.1016/j.cirp.2024.04.073","DOIUrl":null,"url":null,"abstract":"<div><p>Deep Learning can learn complex properties from image datasets, which are difficult to model with traditional machine vision algorithms, inherently in the form of disentangled latent spaces. With latent spaces of Generative AI models, a feature extraction method to access these properties can be implemented. This work evaluates whether the learned properties can be measured in the latent space. Quantity and quantity-value scale properties and the measurability of the dimensional quality characteristic ‘filling degree’ using a linear calibration function are demonstrated for an industrial machine vision application. An uncertainty indicator between 0.4–0.9 mm is estimated for the latent space measurements.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 389-392"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0007850624000866/pdfft?md5=ffa0ca65dfa41964cf67cbc1b46e291d&pid=1-s2.0-S0007850624000866-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000866","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Deep Learning can learn complex properties from image datasets, which are difficult to model with traditional machine vision algorithms, inherently in the form of disentangled latent spaces. With latent spaces of Generative AI models, a feature extraction method to access these properties can be implemented. This work evaluates whether the learned properties can be measured in the latent space. Quantity and quantity-value scale properties and the measurability of the dimensional quality characteristic ‘filling degree’ using a linear calibration function are demonstrated for an industrial machine vision application. An uncertainty indicator between 0.4–0.9 mm is estimated for the latent space measurements.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.