Effect of Ta2O5 content on the microstructural properties of 45S5 bioglass glass-ceramic scaffolds

IF 2.7 4区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Boletin de la Sociedad Espanola de Ceramica y Vidrio Pub Date : 2024-07-01 DOI:10.1016/j.bsecv.2024.04.004
{"title":"Effect of Ta2O5 content on the microstructural properties of 45S5 bioglass glass-ceramic scaffolds","authors":"","doi":"10.1016/j.bsecv.2024.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>Bioactive glasses are mainly used to repair bone defects since they stimulate the natural healing of damaged tissues, allowing the adhesion and proliferation of bone-forming cells. On the other hand, tantalum is known to have good chemical resistance and biocompatibility, with no adverse biological response in organisms. In the present work, 45S5 bioglass systems undoped and doped with Ta<sub>2</sub>O<sub>5</sub> were prepared according to the following stoichiometric molar relationship (46<!--> <!-->−<!--> <em>x</em>)SiO<sub>2</sub> <!-->−<!--> <!-->26.9CaO<!--> <!-->−<!--> <!-->24.4Na<sub>2</sub>O<!--> <!-->−<!--> <!-->2.6P<sub>2</sub>O<sub>5</sub> <!-->−<!--> <em>x</em>Ta<sub>2</sub>O<sub>5</sub> (<em>x</em> <!-->=<!--> <!-->0, 0.1, 0.5) by the conventional melt quenching technique. Subsequently, scaffolds from these glassy systems were prepared using the combined method of powder technology and polymer foaming. Both, glass powders and scaffolds, were physicochemical characterized. The results showed that the 0.5<!--> <!-->mol% Ta<sub>2</sub>O<sub>5</sub>-doped scaffolds exhibited less contraction (36.53%) and higher porosity (84.24%) during sintering, with interconnected porosity, pore size in the range of 19–260<!--> <!-->μm, and a greater surface area (17.431<!--> <!-->±<!--> <!-->0.846<!--> <!-->m<sup>2</sup>/g) than the scaffolds with no Ta<sub>2</sub>O<sub>5</sub>. Furthermore, the tantalum oxide promoted the formation of a sodium tantalum phosphate phase, along with the combeite and silicorhenanite present in the undoped-glass scaffolds. The maximum compressive strength of scaffolds ranged from 0.42 to 1.40<!--> <!-->MPa and the elastic modulus (<em>E</em>) from 0.19 to 0.47<!--> <!-->GPa.</p></div>","PeriodicalId":56330,"journal":{"name":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0366317524000116/pdfft?md5=7cd0453c2d9cb5e53e13753ac07c30cd&pid=1-s2.0-S0366317524000116-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0366317524000116","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bioactive glasses are mainly used to repair bone defects since they stimulate the natural healing of damaged tissues, allowing the adhesion and proliferation of bone-forming cells. On the other hand, tantalum is known to have good chemical resistance and biocompatibility, with no adverse biological response in organisms. In the present work, 45S5 bioglass systems undoped and doped with Ta2O5 were prepared according to the following stoichiometric molar relationship (46  x)SiO2  26.9CaO  24.4Na2O  2.6P2O5  xTa2O5 (x = 0, 0.1, 0.5) by the conventional melt quenching technique. Subsequently, scaffolds from these glassy systems were prepared using the combined method of powder technology and polymer foaming. Both, glass powders and scaffolds, were physicochemical characterized. The results showed that the 0.5 mol% Ta2O5-doped scaffolds exhibited less contraction (36.53%) and higher porosity (84.24%) during sintering, with interconnected porosity, pore size in the range of 19–260 μm, and a greater surface area (17.431 ± 0.846 m2/g) than the scaffolds with no Ta2O5. Furthermore, the tantalum oxide promoted the formation of a sodium tantalum phosphate phase, along with the combeite and silicorhenanite present in the undoped-glass scaffolds. The maximum compressive strength of scaffolds ranged from 0.42 to 1.40 MPa and the elastic modulus (E) from 0.19 to 0.47 GPa.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ta2O5 含量对 45S5 生物玻璃陶瓷支架微观结构特性的影响
生物活性玻璃主要用于修复骨缺损,因为它们能刺激受损组织的自然愈合,使骨形成细胞得以粘附和增殖。另一方面,众所周知,钽具有良好的耐化学性和生物相容性,不会对生物体产生不良的生物反应。本研究采用传统的熔体淬火技术,按照以下化学计量摩尔关系制备了未掺杂和掺杂 Ta2O5 的 45S5 生物玻璃系统:(46 - x)SiO2 - 26.9CaO - 24.4Na2O - 2.6P2O5 - xTa2O5(x = 0、0.1、0.5)。随后,采用粉末技术和聚合物发泡相结合的方法制备了这些玻璃体系的支架。对玻璃粉和支架都进行了物理化学表征。结果表明,与不掺杂 Ta2O5 的支架相比,掺杂 0.5 mol% Ta2O5 的支架在烧结过程中表现出更小的收缩率(36.53%)和更高的孔隙率(84.24%),孔隙率相互连接,孔径范围为 19-260 μm,表面积更大(17.431 ± 0.846 m2/g)。此外,氧化钽促进了磷酸钽钠相的形成,同时也促进了未掺杂玻璃支架中存在的泡沸石和硅硼酸盐相的形成。支架的最大抗压强度为 0.42 至 1.40 兆帕,弹性模量(E)为 0.19 至 0.47 千兆帕。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Boletin de la Sociedad Espanola de Ceramica y Vidrio
Boletin de la Sociedad Espanola de Ceramica y Vidrio 工程技术-材料科学:硅酸盐
CiteScore
5.50
自引率
2.90%
发文量
72
审稿时长
103 days
期刊介绍: The Journal of the Spanish Ceramic and Glass Society publishes scientific articles and communications describing original research and reviews relating to ceramic materials and glasses. The main interests are on novel generic science and technology establishing the relationships between synthesis, processing microstructure and properties of materials. Papers may deal with ceramics and glasses included in any of the conventional categories: structural, functional, traditional, composites and cultural heritage. The main objective of the Journal of the Spanish Ceramic and Glass Society is to sustain a high standard research quality by means of appropriate reviewing procedures.
期刊最新文献
α/β-TCP silicate glass-ceramic obtained by sol–gel: Structure and in vitro bioactivity On the use of Afyon clay in Ukrainian clay-free compositions for porcelain tile manufacture Inteligencia artificial y materiales Spectroscopic insight into the structural and microstructural properties of La2Ce2O7 ceramics Characterization of the dynamic properties of an automotive laminated glass ceiling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1