Comparing expert systems and their explainability through similarity

IF 6.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Decision Support Systems Pub Date : 2024-05-14 DOI:10.1016/j.dss.2024.114248
Fabian Gwinner, Christoph Tomitza, Axel Winkelmann
{"title":"Comparing expert systems and their explainability through similarity","authors":"Fabian Gwinner,&nbsp;Christoph Tomitza,&nbsp;Axel Winkelmann","doi":"10.1016/j.dss.2024.114248","DOIUrl":null,"url":null,"abstract":"<div><p>In our work, we propose the use of Representational Similarity Analysis (RSA) for explainable AI (XAI) approaches to enhance the reliability of XAI-based decision support systems. To demonstrate how similarity analysis of explanations can assess the output stability of post-hoc explainers, we conducted a computational evaluative study. This study addresses how our approach can be leveraged to analyze the stability of explanations amidst various changes in the ML pipeline. Our results show that modifications such as altered preprocessing or different ML models lead to changes in the explanations and illustrate the extent to which stability can suffer. Explanation similarity analysis enables practitioners to compare different explanation outcomes, thus monitoring stability in explanations. Alongside discussing the results and practical applications in operationalized ML, including both benefits and limitations, we also delve into insights from computational neuroscience and neural information processing.</p></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"182 ","pages":"Article 114248"},"PeriodicalIF":6.7000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167923624000812/pdfft?md5=26e3bab8943b94c29831fea4d22af788&pid=1-s2.0-S0167923624000812-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923624000812","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In our work, we propose the use of Representational Similarity Analysis (RSA) for explainable AI (XAI) approaches to enhance the reliability of XAI-based decision support systems. To demonstrate how similarity analysis of explanations can assess the output stability of post-hoc explainers, we conducted a computational evaluative study. This study addresses how our approach can be leveraged to analyze the stability of explanations amidst various changes in the ML pipeline. Our results show that modifications such as altered preprocessing or different ML models lead to changes in the explanations and illustrate the extent to which stability can suffer. Explanation similarity analysis enables practitioners to compare different explanation outcomes, thus monitoring stability in explanations. Alongside discussing the results and practical applications in operationalized ML, including both benefits and limitations, we also delve into insights from computational neuroscience and neural information processing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过相似性比较专家系统及其可解释性
在我们的工作中,我们提出将表征相似性分析(RSA)用于可解释人工智能(XAI)方法,以提高基于 XAI 的决策支持系统的可靠性。为了展示解释的相似性分析如何评估事后解释器的输出稳定性,我们进行了一项计算评估研究。这项研究探讨了如何利用我们的方法来分析在人工智能管道发生各种变化时解释的稳定性。我们的结果表明,改变预处理或不同的 ML 模型等修改会导致解释的变化,并说明稳定性可能受到的影响程度。解释相似性分析使实践者能够比较不同的解释结果,从而监控解释的稳定性。在讨论操作化 ML 的结果和实际应用(包括优点和局限性)的同时,我们还深入探讨了计算神经科学和神经信息处理的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Decision Support Systems
Decision Support Systems 工程技术-计算机:人工智能
CiteScore
14.70
自引率
6.70%
发文量
119
审稿时长
13 months
期刊介绍: The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).
期刊最新文献
A comparative analysis of the effect of initiative risk statement versus passive risk disclosure on the financing performance of Kickstarter campaigns DeepSecure: A computational design science approach for interpretable threat hunting in cybersecurity decision making Editorial Board Effects of visual-preview and information-sidedness features on website persuasiveness The evolution of organizations and stakeholders for metaverse ecosystems: Editorial for the special issue on metaverse part 1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1