Deep-reinforcement-learning-based hull form optimization method for stealth submarine design

IF 2.3 3区 工程技术 Q2 ENGINEERING, MARINE International Journal of Naval Architecture and Ocean Engineering Pub Date : 2024-01-01 DOI:10.1016/j.ijnaoe.2024.100595
Sang-Jae Yeo , Suk-Yoon Hong , Jee-Hun Song
{"title":"Deep-reinforcement-learning-based hull form optimization method for stealth submarine design","authors":"Sang-Jae Yeo ,&nbsp;Suk-Yoon Hong ,&nbsp;Jee-Hun Song","doi":"10.1016/j.ijnaoe.2024.100595","DOIUrl":null,"url":null,"abstract":"<div><p>The stealth performance of submarines is closely related to their hull forms. In this study, an optimization method based on Deep Reinforcement Learning (DRL) was developed to design submarine hull forms, aimed at maximizing the stealth performance. The DRL optimization technique relied on the decision-making process of an agent for determining actions resulting in changes in the hull form, using stealth performance as the reward. The stealth performance of the submarine was evaluated through a Target Strength (TS) analysis model. Additionally, functional constraints of the examined hull forms were implemented in the optimization process, including geometric constraints related to the hull form and dynamic stability constraints pertaining to the hydrodynamic maneuvering characteristics. The TS of the final optimized hull form was 6.5 dB lower than that of the base model, indicating remarkable stealth performance and improved maneuverability. These results validated the effectiveness of the proposed DRL-based optimization method.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"16 ","pages":"Article 100595"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2092678224000141/pdfft?md5=de99f5df3373272caf85e17933b9e3b1&pid=1-s2.0-S2092678224000141-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678224000141","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

The stealth performance of submarines is closely related to their hull forms. In this study, an optimization method based on Deep Reinforcement Learning (DRL) was developed to design submarine hull forms, aimed at maximizing the stealth performance. The DRL optimization technique relied on the decision-making process of an agent for determining actions resulting in changes in the hull form, using stealth performance as the reward. The stealth performance of the submarine was evaluated through a Target Strength (TS) analysis model. Additionally, functional constraints of the examined hull forms were implemented in the optimization process, including geometric constraints related to the hull form and dynamic stability constraints pertaining to the hydrodynamic maneuvering characteristics. The TS of the final optimized hull form was 6.5 dB lower than that of the base model, indicating remarkable stealth performance and improved maneuverability. These results validated the effectiveness of the proposed DRL-based optimization method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的隐形潜艇艇体形状优化方法
潜艇的隐身性能与其船体形式密切相关。在这项研究中,开发了一种基于深度强化学习(DRL)的优化方法来设计潜艇艇体形式,旨在最大限度地提高隐身性能。DRL 优化技术依赖于代理的决策过程,以隐身性能作为奖励,确定导致艇体形态变化的行动。通过目标强度(TS)分析模型对潜艇的隐身性能进行了评估。此外,在优化过程中还实施了所检查的艇体形式的功能约束,包括与艇体形式有关的几何约束和与水动力操纵特性有关的动态稳定性约束。最终优化后的船体形式的 TS 值比基本模型低 6.5 dB,这表明其具有显著的隐身性能和更好的机动性。这些结果验证了所提出的基于 DRL 的优化方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
4.50%
发文量
62
审稿时长
12 months
期刊介绍: International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.
期刊最新文献
A fundamental study on structural strength assessment of U-bolts for expanded application to shipbuilding and offshore piping systems A numerical study on the feasibility of predicting the resistance of a full-scale ship using a virtual fluid A novel formula for predicting the ultimate compressive strength of the cylindrically curved plates A numerical study of added resistance performance and hydrodynamics of KCS hull in oblique regular waves and estimation of resistance in short-crested irregular waves through spectral method Evaluation of subgrid scale models in turbulent large eddy simulations of pumpjet propulsor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1