{"title":"Tuning conditions for the amine-functionalization of carbonyls formed in biobased polyfurfuryl alcohol","authors":"Pierre Delliere, Nathanael Guigo","doi":"10.1016/j.giant.2024.100283","DOIUrl":null,"url":null,"abstract":"<div><p>Biobased furan resins (furfuryl alcohol based) are functionalized by taking advantage of a side-reaction occurring during its polymerization. The furan ring-opening reactions yields carbonyls which can be functionalized by reaction with primary amines. Light is shed on unexplored parameters impacting the properties of PFA/Amine systems. First, PFA/Amines were prepared using PFA resins at conversion degree between 0.3 and 0.95. Overall, high conversion degrees (0.9 and above) are best suited to produce rigid materials. In addition, a precipitation process may be used to reach high <em>T<sub>g</sub></em> biobased materials (145 °C). Finally, the impact of the amines’ basicity on the properties of PFA/Amines was investigated. The results highlighted that PFAs at conversion degrees above 0.9 are little affected by the basicity. However, the properties of PFA functionalized at lower conversion degrees are strongly affected by the bases, i.e. high brittleness. This can be circumvented by limiting the functionalization degree to 0.25 and below.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100283"},"PeriodicalIF":5.4000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000481/pdfft?md5=a8a8b66fa774ebeb9360878a7b103f50&pid=1-s2.0-S2666542524000481-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000481","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biobased furan resins (furfuryl alcohol based) are functionalized by taking advantage of a side-reaction occurring during its polymerization. The furan ring-opening reactions yields carbonyls which can be functionalized by reaction with primary amines. Light is shed on unexplored parameters impacting the properties of PFA/Amine systems. First, PFA/Amines were prepared using PFA resins at conversion degree between 0.3 and 0.95. Overall, high conversion degrees (0.9 and above) are best suited to produce rigid materials. In addition, a precipitation process may be used to reach high Tg biobased materials (145 °C). Finally, the impact of the amines’ basicity on the properties of PFA/Amines was investigated. The results highlighted that PFAs at conversion degrees above 0.9 are little affected by the basicity. However, the properties of PFA functionalized at lower conversion degrees are strongly affected by the bases, i.e. high brittleness. This can be circumvented by limiting the functionalization degree to 0.25 and below.
期刊介绍:
Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.