Indonesian GDP movement detection using online news classification

Dinda Pusparahmi Sholawatunnisa, L. H. Suadaa, Usep Nugraha, Setia Pramana
{"title":"Indonesian GDP movement detection using online news classification","authors":"Dinda Pusparahmi Sholawatunnisa, L. H. Suadaa, Usep Nugraha, Setia Pramana","doi":"10.3233/sji-230038","DOIUrl":null,"url":null,"abstract":"Gross Domestic Product (GDP) stands as a pivotal indicator, offering strategic insights into economic dynamics. Recent technological advancements, particularly in real-time information dissemination through online economic news platforms, provide an accessible and alternative data source for analyzing GDP movements. This study employs online news classification to identify patterns in the movement and growth rate of Indonesia’s GDP. Utilizing a web scraping technique, we collected data for analysis. The classification models employed include transfer learning from pre-trained language model transformers, with classical machine learning methods serving as baseline models. The results indicate superior performance by the pre-trained language model transformers, achieving the highest accuracy of 0.8880 and 0.7899. In comparison, hyperparameter-tuned classical machine learning models also demonstrated commendable results, with the best accuracy reaching 0.845 and 0.7811. This research underscores the efficacy of leveraging online news classification, particularly through advanced language models. The findings contribute to a nuanced understanding of economic dynamics, aligning with the contemporary landscape of information accessibility and technological progress.","PeriodicalId":509522,"journal":{"name":"Statistical Journal of the IAOS","volume":"41 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Journal of the IAOS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sji-230038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gross Domestic Product (GDP) stands as a pivotal indicator, offering strategic insights into economic dynamics. Recent technological advancements, particularly in real-time information dissemination through online economic news platforms, provide an accessible and alternative data source for analyzing GDP movements. This study employs online news classification to identify patterns in the movement and growth rate of Indonesia’s GDP. Utilizing a web scraping technique, we collected data for analysis. The classification models employed include transfer learning from pre-trained language model transformers, with classical machine learning methods serving as baseline models. The results indicate superior performance by the pre-trained language model transformers, achieving the highest accuracy of 0.8880 and 0.7899. In comparison, hyperparameter-tuned classical machine learning models also demonstrated commendable results, with the best accuracy reaching 0.845 and 0.7811. This research underscores the efficacy of leveraging online news classification, particularly through advanced language models. The findings contribute to a nuanced understanding of economic dynamics, aligning with the contemporary landscape of information accessibility and technological progress.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用在线新闻分类检测印度尼西亚 GDP 变动情况
国内生产总值(GDP)是一个关键指标,可提供经济动态的战略洞察力。最近的技术进步,尤其是通过在线经济新闻平台进行实时信息传播的技术进步,为分析国内生产总值的变动提供了一个可访问的替代数据源。本研究利用在线新闻分类来识别印尼国内生产总值的变动和增长率模式。我们利用网络搜索技术收集数据进行分析。采用的分类模型包括来自预训练语言模型转换器的迁移学习,以及作为基准模型的经典机器学习方法。结果表明,预先训练的语言模型转换器性能优越,达到了 0.8880 和 0.7899 的最高准确率。相比之下,经过超参数调整的经典机器学习模型也取得了可喜的成绩,最佳准确率分别达到了 0.845 和 0.7811。这项研究强调了利用网络新闻分类的有效性,特别是通过先进的语言模型。研究结果有助于深入理解经济动态,与当代信息可获取性和技术进步相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Outlier identification and adjustment for time series The production of official agricultural statistics in 2040: What does the future hold? The interdependence and cointegration of stock markets: Evidence from Japan, India and USA Identifying spatially differentiated pathways for rural transformation in Pakistan Crop sequence boundaries using USDA national agricultural statistics service historic cropland data layers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1