Rice-ResNet: Rice classification and quality detection by transferred ResNet deep model

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Impacts Pub Date : 2024-05-01 DOI:10.1016/j.simpa.2024.100654
Mohammadreza Razavi , Samira Mavaddati , Ziad Kobti , Hamidreza Koohi
{"title":"Rice-ResNet: Rice classification and quality detection by transferred ResNet deep model","authors":"Mohammadreza Razavi ,&nbsp;Samira Mavaddati ,&nbsp;Ziad Kobti ,&nbsp;Hamidreza Koohi","doi":"10.1016/j.simpa.2024.100654","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient classification and quality assessment of rice varieties are essential for market pricing, food safety, and consumer satisfaction in the global rice sector. Leveraging pre-trained ResNet architectures, Rice-ResNet significantly enhances feature extraction, ensuring accurate classification and quality detection of rice cultivars. This system, accessible in Python repositories, promises improved crop management and yield. Despite requiring real-world implementation, Rice-ResNet marks a significant advancement in rice classification, fostering enriched digital experiences.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100654"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000423/pdfft?md5=7f6cac9662fee8181f8b6d8a112ac6a5&pid=1-s2.0-S2665963824000423-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient classification and quality assessment of rice varieties are essential for market pricing, food safety, and consumer satisfaction in the global rice sector. Leveraging pre-trained ResNet architectures, Rice-ResNet significantly enhances feature extraction, ensuring accurate classification and quality detection of rice cultivars. This system, accessible in Python repositories, promises improved crop management and yield. Despite requiring real-world implementation, Rice-ResNet marks a significant advancement in rice classification, fostering enriched digital experiences.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rice-ResNet:通过转移 ResNet 深度模型进行水稻分类和质量检测
高效的水稻品种分类和质量评估对于全球水稻行业的市场定价、食品安全和消费者满意度至关重要。利用预先训练的 ResNet 架构,Rice-ResNet 可显著增强特征提取,确保对水稻品种进行准确分类和质量检测。该系统可在 Python 存储库中访问,有望改善作物管理并提高产量。尽管需要在现实世界中实施,但 Rice-ResNet 标志着水稻分类领域的重大进步,促进了丰富的数字体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
期刊最新文献
KNNOR-Reg: A python package for oversampling in imbalanced regression pff-oc: A space–time phase-field fracture optimal control framework Synthetic dataset generation system for vehicle detection Multi-browser VE: Enhancing internet browsing experience through virtual reality DeepPack3D: A Python package for online 3D bin packing optimization by deep reinforcement learning and constructive heuristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1