20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chinese Chemical Letters Pub Date : 2024-05-17 DOI:10.1016/j.cclet.2024.110025
{"title":"20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries","authors":"","doi":"10.1016/j.cclet.2024.110025","DOIUrl":null,"url":null,"abstract":"<div><p>Dendrite growth of zinc (Zn) anode at high current density severely affects the fast-charging performance of aqueous zinc metal batteries (AZMBs). While interfacial modification strategies can optimize Zn performance, challenges such as complicated preparation processes, excessive layer thicknesses, and high voltage hysteresis should be addressed. Herein, we utilize a cost-effective liquid fluorosiloxane, (3,3,3-trifluoropropyl)trimethoxysilane, for scalable modification of Zn foil <em>via</em> drop-casting at room temperature, resulting in an ultra-thin interphase layer of only 20 nm. The Si-O-Zn bonds formed between fluorosiloxane and Zn ensure interfacial stability, and the Si-O-Si bonds between fluorosiloxane molecules help to homogenize the electric field distribution. Additionally, the abundant highly electronegative fluorine atoms on the anode surface act as zincophilic sites, promoting the uniform deposition of Zn<sup>2+</sup>. Thus, the modified Zn foil (SiFO-Zn) exhibits excellent dendrite suppression, reduced voltage hysteresis, and prolonged cycle life at ultra-high current density (40 mA/cm<sup>2</sup>), achieving a cumulative areal capacity of 12.9 Ah/cm<sup>2</sup>. Further, the full cell assembled with 10 μm-thick SiFO-Zn anode and MnO<sub>2</sub> cathode achieves 2600 cycles at 5 A/g with minimal capacity degradation, and a large-size (22.5 cm<sup>−2</sup>) pouch cell powers the light-emitting diode even after reverse bending, demonstrating the potential of AZMBs for fast-charging flexible devices.</p></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724005448","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dendrite growth of zinc (Zn) anode at high current density severely affects the fast-charging performance of aqueous zinc metal batteries (AZMBs). While interfacial modification strategies can optimize Zn performance, challenges such as complicated preparation processes, excessive layer thicknesses, and high voltage hysteresis should be addressed. Herein, we utilize a cost-effective liquid fluorosiloxane, (3,3,3-trifluoropropyl)trimethoxysilane, for scalable modification of Zn foil via drop-casting at room temperature, resulting in an ultra-thin interphase layer of only 20 nm. The Si-O-Zn bonds formed between fluorosiloxane and Zn ensure interfacial stability, and the Si-O-Si bonds between fluorosiloxane molecules help to homogenize the electric field distribution. Additionally, the abundant highly electronegative fluorine atoms on the anode surface act as zincophilic sites, promoting the uniform deposition of Zn2+. Thus, the modified Zn foil (SiFO-Zn) exhibits excellent dendrite suppression, reduced voltage hysteresis, and prolonged cycle life at ultra-high current density (40 mA/cm2), achieving a cumulative areal capacity of 12.9 Ah/cm2. Further, the full cell assembled with 10 μm-thick SiFO-Zn anode and MnO2 cathode achieves 2600 cycles at 5 A/g with minimal capacity degradation, and a large-size (22.5 cm−2) pouch cell powers the light-emitting diode even after reverse bending, demonstrating the potential of AZMBs for fast-charging flexible devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
20 纳米超薄氟硅氧烷相间层实现了无枝晶、快速充电和灵活的水性锌金属电池
锌(Zn)阳极在高电流密度下的枝晶生长严重影响了锌金属水电池(AZMB)的快速充电性能。虽然界面改性策略可以优化锌的性能,但仍需解决制备工艺复杂、层厚度过大和高压滞后等难题。在本文中,我们利用一种具有成本效益的液态氟硅氧烷--(3,3,3-三氟丙基)三甲氧基硅烷,在室温下通过滴注法对 Zn 箔进行了可扩展的改性,从而形成了仅 20 纳米的超薄相间层。氟硅氧烷和 Zn 之间形成的 Si-O-Zn 键确保了界面稳定性,氟硅氧烷分子之间的 Si-O-Si 键有助于均匀电场分布。此外,阳极表面丰富的高电负性氟原子可作为亲锌位点,促进 Zn2+ 的均匀沉积。因此,改性锌箔(SiFO-Zn)在超高电流密度(40 mA/cm2)条件下表现出卓越的枝晶抑制能力,降低了电压滞后,延长了循环寿命,实现了 12.9 Ah/cm2 的累积面积容量。此外,由 10 μm 厚的 SiFO-Zn 阳极和 MnO2 阴极组装而成的全电池在 5 A/g 的条件下可循环使用 2600 次,且容量衰减极小;即使在反向弯曲后,大尺寸(22.5 cm-2)袋状电池也能为发光二极管供电,这证明了 AZMB 在柔性设备快速充电方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
期刊最新文献
Fluorine-functionalized zirconium-organic cages for efficient photocatalytic oxidation of thioanisole Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor Synergistic regulation of polysulfides shuttle effect and lithium dendrites from cobalt-molybdenum bimetallic carbides (Co-Mo-C) heterostructure for robust Li-S batteries Trace detection of benzene, toluene and xylene (BTX) by chemiresistive metal oxide-based gas sensors: Recent advances in heterojunction materials design Graphical Abstracts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1