首页 > 最新文献

Chinese Chemical Letters最新文献

英文 中文
IFC - Editorial Board/ Publication info IFC -编辑委员会/出版信息
IF 8.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2026-02-01 DOI: 10.1016/S1001-8417(25)01427-5
{"title":"IFC - Editorial Board/ Publication info","authors":"","doi":"10.1016/S1001-8417(25)01427-5","DOIUrl":"10.1016/S1001-8417(25)01427-5","url":null,"abstract":"","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"37 2","pages":"Article 112250"},"PeriodicalIF":8.9,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146090629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional nanoadjuvants-aided synergistic photothermal-immunotherapy of tumor 多功能纳米佐剂辅助的肿瘤协同光热免疫治疗
IF 8.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-25 DOI: 10.1016/j.cclet.2025.112324
Kaiyue Yang , Yifan Zhang , Shamei Luo, Chenxi Yu, Lin Chen, Qingyu Yu, Chenlu Huang, Guilei Ma, Linhua Zhang, Dunwan Zhu
Cancer persists as a major global health challenge, marked by high recurrence rates in aggressive malignancies such as melanoma. While immunotherapy has emerged as a promising approach, its clinical benefits are often limited by tumor immune escape mechanisms and an immunosuppressive tumor microenvironment (TME). These hurdles have driven the exploration of integrated approaches, with photothermal-immunotherapy gaining significant traction. In this study, we developed a multifunctional nanoadjuvant (MICN@PI) engineered with an acid-responsive calcium carbonate core, a hypoxia-alleviating MnO2 component, a polydopamine shell for photothermal ablation, and co-loaded immunomodulators (imiquimod and indoximod). The MnO2 in the nanoadjuvant catalytically converted the overexpressed H2O2 in the TME into O2. Concurrently, the combined action of imiquimod and indoximod orchestrated a potent adaptive immune response. Upon near-infrared laser irradiation, MICN@PI achieved significant tumor ablation, inhibited recurrence, and prolonged survival in a murine melanoma model, offering a safe and effective synergistic photothermal-immunotherapy strategy for cancer treatment.
癌症仍然是全球健康面临的主要挑战,其特点是恶性肿瘤如黑色素瘤的复发率很高。虽然免疫治疗已经成为一种很有前途的方法,但其临床效益往往受到肿瘤免疫逃逸机制和免疫抑制肿瘤微环境(TME)的限制。这些障碍推动了对综合方法的探索,光热免疫疗法获得了显著的吸引力。在这项研究中,我们开发了一种多功能纳米佐剂(MICN@PI),该佐剂具有酸反应性碳酸钙核心,减轻缺氧的MnO2成分,用于光热消融的聚多巴胺外壳,以及共负载的免疫调节剂(咪喹莫特和吲哚莫特)。纳米佐剂中的MnO2将TME中过表达的H2O2催化转化为O2。同时,咪喹莫特和吲哚莫特的联合作用形成了强有力的适应性免疫反应。在近红外激光照射下,MICN@PI在小鼠黑色素瘤模型中实现了显著的肿瘤消融,抑制复发,延长生存期,为癌症治疗提供了一种安全有效的协同光热免疫治疗策略。
{"title":"Multifunctional nanoadjuvants-aided synergistic photothermal-immunotherapy of tumor","authors":"Kaiyue Yang ,&nbsp;Yifan Zhang ,&nbsp;Shamei Luo,&nbsp;Chenxi Yu,&nbsp;Lin Chen,&nbsp;Qingyu Yu,&nbsp;Chenlu Huang,&nbsp;Guilei Ma,&nbsp;Linhua Zhang,&nbsp;Dunwan Zhu","doi":"10.1016/j.cclet.2025.112324","DOIUrl":"10.1016/j.cclet.2025.112324","url":null,"abstract":"<div><div>Cancer persists as a major global health challenge, marked by high recurrence rates in aggressive malignancies such as melanoma. While immunotherapy has emerged as a promising approach, its clinical benefits are often limited by tumor immune escape mechanisms and an immunosuppressive tumor microenvironment (TME). These hurdles have driven the exploration of integrated approaches, with photothermal-immunotherapy gaining significant traction. In this study, we developed a multifunctional nanoadjuvant (MICN@PI) engineered with an acid-responsive calcium carbonate core, a hypoxia-alleviating MnO<sub>2</sub> component, a polydopamine shell for photothermal ablation, and co-loaded immunomodulators (imiquimod and indoximod). The MnO<sub>2</sub> in the nanoadjuvant catalytically converted the overexpressed H<sub>2</sub>O<sub>2</sub> in the TME into O<sub>2</sub>. Concurrently, the combined action of imiquimod and indoximod orchestrated a potent adaptive immune response. Upon near-infrared laser irradiation, MICN@PI achieved significant tumor ablation, inhibited recurrence, and prolonged survival in a murine melanoma model, offering a safe and effective synergistic photothermal-immunotherapy strategy for cancer treatment.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"37 4","pages":"Article 112324"},"PeriodicalIF":8.9,"publicationDate":"2025-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145975190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IFC - Editorial Board/ Publication info IFC -编辑委员会/出版信息
IF 8.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-16 DOI: 10.1016/S1001-8417(25)01251-3
{"title":"IFC - Editorial Board/ Publication info","authors":"","doi":"10.1016/S1001-8417(25)01251-3","DOIUrl":"10.1016/S1001-8417(25)01251-3","url":null,"abstract":"","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"37 1","pages":"Article 112074"},"PeriodicalIF":8.9,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145786437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2030 roadmap on two-dimensional materials for energy storage and conversion 2030年二维材料储能与转换路线图
IF 8.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-10 DOI: 10.1016/j.cclet.2025.112242
Lan Ding , Kezhen Qi , Zimo Huang , Ying Yu , Ze Yang , Sepehr Tabibi , Alireza Khataee , Lei Hao , Qitao Zhang , Vadim Popkov , Maria Kaneva , Artem Lobinsky , Zhipeng Yu , Jun Li , Amir Sultan , Kun Zheng , Gan Qu , Dandan Ma , Jian-Wen Shi , Ahmed Ismail
Two-dimensional (2D) materials have rapidly emerged as transformative platforms for energy storage and conversion, owing to their atomic-scale thickness, tunable electronic structures, and versatile chemical functionalities. Over the past five years, remarkable advances in material synthesis, interface engineering, and device integration have unlocked new opportunities, yet challenges in stability, scalability, and performance optimization remain. In this roadmap, we provide an updated perspective toward 2030, systematically reviewing eleven representative 2D material classes, which can be broadly grouped into carbon-based materials, inorganic semiconductors, framework materials, and layered nanosheet systems. Their opportunities and challenges in electrochemical energy storage, photocatalysis, and electrocatalysis are highlighted. We believe this roadmap can enrich the development of 2D materials for sustainable energy technologies, and provide useful guidance for both fundamental studies and practical applications in the coming decade.
二维(2D)材料由于其原子尺度的厚度、可调的电子结构和通用的化学功能,已迅速成为能量存储和转换的变革性平台。在过去的五年中,材料合成、界面工程和器件集成方面的显著进步带来了新的机遇,但稳定性、可扩展性和性能优化方面的挑战仍然存在。在这一路线图中,我们提供了一个面向2030年的最新视角,系统地回顾了11种代表性的二维材料类别,这些材料可以大致分为碳基材料、无机半导体、框架材料和层状纳米片系统。强调了它们在电化学储能、光催化和电催化方面的机遇和挑战。我们相信这一路线图可以丰富二维材料可持续能源技术的发展,并为未来十年的基础研究和实际应用提供有用的指导。
{"title":"2030 roadmap on two-dimensional materials for energy storage and conversion","authors":"Lan Ding ,&nbsp;Kezhen Qi ,&nbsp;Zimo Huang ,&nbsp;Ying Yu ,&nbsp;Ze Yang ,&nbsp;Sepehr Tabibi ,&nbsp;Alireza Khataee ,&nbsp;Lei Hao ,&nbsp;Qitao Zhang ,&nbsp;Vadim Popkov ,&nbsp;Maria Kaneva ,&nbsp;Artem Lobinsky ,&nbsp;Zhipeng Yu ,&nbsp;Jun Li ,&nbsp;Amir Sultan ,&nbsp;Kun Zheng ,&nbsp;Gan Qu ,&nbsp;Dandan Ma ,&nbsp;Jian-Wen Shi ,&nbsp;Ahmed Ismail","doi":"10.1016/j.cclet.2025.112242","DOIUrl":"10.1016/j.cclet.2025.112242","url":null,"abstract":"<div><div>Two-dimensional (2D) materials have rapidly emerged as transformative platforms for energy storage and conversion, owing to their atomic-scale thickness, tunable electronic structures, and versatile chemical functionalities. Over the past five years, remarkable advances in material synthesis, interface engineering, and device integration have unlocked new opportunities, yet challenges in stability, scalability, and performance optimization remain. In this roadmap, we provide an updated perspective toward 2030, systematically reviewing eleven representative 2D material classes, which can be broadly grouped into carbon-based materials, inorganic semiconductors, framework materials, and layered nanosheet systems. Their opportunities and challenges in electrochemical energy storage, photocatalysis, and electrocatalysis are highlighted. We believe this roadmap can enrich the development of 2D materials for sustainable energy technologies, and provide useful guidance for both fundamental studies and practical applications in the coming decade.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"37 3","pages":"Article 112242"},"PeriodicalIF":8.9,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145788331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal-organic frameworks for clean water 金属有机框架清洁水
IF 8.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-09 DOI: 10.1016/j.cclet.2025.112243
Xiao-Hong Yi , Hong-Yu Chu , Chao-Yang Wang , Hang Ren , Li-hong Zhou , Yujie Zhao , Fu-Xue Wang , Hao Du , Yixuan Zhai , Tao Xia , Shaohua Guo , Xiaoning Wang , Yunlong Wang , Qian Wen , Ge Shen , Meng Yang , Yu-Hang Li , Mingjia Xu , Xiaoyuan Zhang , Hao Wang , Chong-Chen Wang
This review comprehensively summarizes the latest advancements in the synthesis and multifaceted applications of metal-organic frameworks (MOFs) for clean water. It systematically explores scalable synthesis methods, from solvothermal to green mechanochemical routes, and highlights the innovative transformation of waste into high-value MOFs. The article delves into the diverse functionalities of MOFs in water remediation, including the adsorptive and catalytic removal of heavy metals, organic pollutants, pharmaceuticals, PFASs, and micro/nano-plastics. Applications in sensing, radionuclide separation, oil-water separation, and advanced membrane technologies are also detailed. Furthermore, emerging roles in water capture, algal inhibition and resource recovery are discussed. Finally, the review provides a critical perspective on future challenges and opportunities, emphasizing sustainable synthesis, life-cycle assessment, and the integration of AI for the intelligent design of next-generation MOFs, paving the way for their transition from laboratory research to real-world water treatment solutions.
本文综述了清洁水用金属有机框架材料的合成及其多方面应用的最新进展。它系统地探索了可扩展的合成方法,从溶剂热到绿色机械化学路线,并强调了将废物转化为高价值mof的创新方法。本文深入探讨了mof在水修复中的多种功能,包括吸附和催化去除重金属、有机污染物、药物、全氟辛烷磺酸和微/纳米塑料。在传感、放射性核素分离、油水分离和先进膜技术方面的应用也很详细。此外,还讨论了在水捕获、藻类抑制和资源恢复方面的新作用。最后,本文对未来的挑战和机遇进行了批判性的展望,强调了下一代mof的可持续综合、生命周期评估和人工智能的集成,为其从实验室研究过渡到现实世界的水处理解决方案铺平了道路。
{"title":"Metal-organic frameworks for clean water","authors":"Xiao-Hong Yi ,&nbsp;Hong-Yu Chu ,&nbsp;Chao-Yang Wang ,&nbsp;Hang Ren ,&nbsp;Li-hong Zhou ,&nbsp;Yujie Zhao ,&nbsp;Fu-Xue Wang ,&nbsp;Hao Du ,&nbsp;Yixuan Zhai ,&nbsp;Tao Xia ,&nbsp;Shaohua Guo ,&nbsp;Xiaoning Wang ,&nbsp;Yunlong Wang ,&nbsp;Qian Wen ,&nbsp;Ge Shen ,&nbsp;Meng Yang ,&nbsp;Yu-Hang Li ,&nbsp;Mingjia Xu ,&nbsp;Xiaoyuan Zhang ,&nbsp;Hao Wang ,&nbsp;Chong-Chen Wang","doi":"10.1016/j.cclet.2025.112243","DOIUrl":"10.1016/j.cclet.2025.112243","url":null,"abstract":"<div><div>This review comprehensively summarizes the latest advancements in the synthesis and multifaceted applications of metal-organic frameworks (MOFs) for clean water. It systematically explores scalable synthesis methods, from solvothermal to green mechanochemical routes, and highlights the innovative transformation of waste into high-value MOFs. The article delves into the diverse functionalities of MOFs in water remediation, including the adsorptive and catalytic removal of heavy metals, organic pollutants, pharmaceuticals, PFASs, and micro/nano-plastics. Applications in sensing, radionuclide separation, oil-water separation, and advanced membrane technologies are also detailed. Furthermore, emerging roles in water capture, algal inhibition and resource recovery are discussed. Finally, the review provides a critical perspective on future challenges and opportunities, emphasizing sustainable synthesis, life-cycle assessment, and the integration of AI for the intelligent design of next-generation MOFs, paving the way for their transition from laboratory research to real-world water treatment solutions.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"37 3","pages":"Article 112243"},"PeriodicalIF":8.9,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145837503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical reactions in living cells for enhanced biological treatment 用于强化生物处理的活细胞中的化学反应
IF 8.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-06 DOI: 10.1016/j.cclet.2025.112220
Yunfei Fu , Hui Li , Chengfei Liu, Wei Tian
Inspired by the natural synthesis of biomolecules, the artificial production of therapeutic agents within cells has emerged as a powerful and versatile approach for disease treatment. Performing artificial chemical reactions within living cells to achieve various physiological goals remains both an intriguing and highly challenging endeavor. This review summarizes recent advancements and future trends in the field of chemical reactions inside living cells, organized by different reaction mechanisms. We also provide an in-depth discussion of their chemical designs, reaction mechanisms, and functional applications. Furthermore, we explore the underlying chemical principles of these reactions and discuss strategies for these materials to enhance their therapeutic efficacy. As researchers continue to expand the repertoire of intracellular synthesis techniques, it is anticipated that these advancements will provide valuable tools for probing biological systems and developing innovative therapeutic strategies.
受生物分子自然合成的启发,在细胞内人工生产治疗剂已经成为一种强大而通用的疾病治疗方法。在活细胞内进行人工化学反应以实现各种生理目标仍然是一项有趣且极具挑战性的努力。本文从不同的化学反应机制出发,综述了近年来活细胞内化学反应的研究进展和未来发展趋势。我们还对它们的化学设计、反应机理和功能应用进行了深入的讨论。此外,我们探讨了这些反应的潜在化学原理,并讨论了这些材料的策略,以提高其治疗效果。随着研究人员不断扩大细胞内合成技术的范围,预计这些进步将为探测生物系统和开发创新的治疗策略提供有价值的工具。
{"title":"Chemical reactions in living cells for enhanced biological treatment","authors":"Yunfei Fu ,&nbsp;Hui Li ,&nbsp;Chengfei Liu,&nbsp;Wei Tian","doi":"10.1016/j.cclet.2025.112220","DOIUrl":"10.1016/j.cclet.2025.112220","url":null,"abstract":"<div><div>Inspired by the natural synthesis of biomolecules, the artificial production of therapeutic agents within cells has emerged as a powerful and versatile approach for disease treatment. Performing artificial chemical reactions within living cells to achieve various physiological goals remains both an intriguing and highly challenging endeavor. This review summarizes recent advancements and future trends in the field of chemical reactions inside living cells, organized by different reaction mechanisms. We also provide an in-depth discussion of their chemical designs, reaction mechanisms, and functional applications. Furthermore, we explore the underlying chemical principles of these reactions and discuss strategies for these materials to enhance their therapeutic efficacy. As researchers continue to expand the repertoire of intracellular synthesis techniques, it is anticipated that these advancements will provide valuable tools for probing biological systems and developing innovative therapeutic strategies.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"37 4","pages":"Article 112220"},"PeriodicalIF":8.9,"publicationDate":"2025-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145974836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure–function correlation and design principles of two-dimensional bismuth nanosheets for efficient electrochemical CO2 reduction 二维铋纳米片的结构-功能关联及设计原理
IF 8.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-27 DOI: 10.1016/j.cclet.2025.112179
Chuncheng Xu , Suqin Han , Kaiyang Zhang , Qiuling Feng , Lan Bao , Mingming Gao , Wen-Yan Gao , Yen Leng Pak , Hongyu Mou , Liwei Chen , Xing Gao , Yuchen Hao
Electrochemical reduction of carbon dioxide (CO2RR) into formate and related products is a crucial strategy for sustainable carbon utilization, yet the development of catalysts with both high efficiency and durability remains a central challenge. Among available candidates, two-dimensional (2D) bismuth (Bi) nanosheets stand out because of their earth abundance, low toxicity, and unique ability to stabilize *OCHO intermediates. In this review, we systematically summarize recent advances in the controlled synthesis of 2D Bi nanosheets, covering bottom-up chemical and electrochemical routes, top-down exfoliation, and physical/thermal methods, and highlight the application strategies that enable performance optimization, including defect/strain engineering, heteroatom doping, interface construction, heterostructure coupling, in situ reconstruction, and microenvironment regulation. We further integrate mechanistic insights from in situ/operando characterizations and density functional theory, which clarify the real active sites, dynamic reconstruction, and structure–activity relationships. Finally, we provide a forward-looking perspective on atomic-level structural control, understanding and regulating reconstruction, multi-scale architecture integration, expanding product selectivity beyond formate, device-level optimization, and data-driven catalyst discovery. By bridging synthesis, application strategies, and mechanistic understanding, this timely review establishes a comprehensive framework to guide the rational design of 2D Bi nanosheets and accelerate their translation toward industrially relevant CO2 electroreduction.
电化学还原二氧化碳(CO2RR)为甲酸盐及其相关产物是碳可持续利用的关键策略,但开发高效耐用的催化剂仍然是一个核心挑战。在可用的候选材料中,二维(2D)铋(Bi)纳米片因其地球丰度、低毒性和稳定*OCHO中间体的独特能力而脱颖而出。在本文中,我们系统地总结了二维铋纳米片的控制合成的最新进展,包括自下而上的化学和电化学途径、自上而下的剥离和物理/热方法,并重点介绍了实现性能优化的应用策略,包括缺陷/应变工程、杂原子掺杂、界面构建、异质结构耦合、原位重建和微环境调节。我们进一步整合了原位/操作位点表征和密度泛函理论的机制见解,阐明了真实的活性位点、动态重建和构效关系。最后,我们对原子级结构控制、理解和调节重建、多尺度结构集成、扩大产品选择性、设备级优化和数据驱动的催化剂发现提供了前瞻性的观点。通过衔接合成、应用策略和机理理解,这篇及时的综述建立了一个全面的框架来指导二维铋纳米片的合理设计,并加速其向工业相关二氧化碳电还原的转化。
{"title":"Structure–function correlation and design principles of two-dimensional bismuth nanosheets for efficient electrochemical CO2 reduction","authors":"Chuncheng Xu ,&nbsp;Suqin Han ,&nbsp;Kaiyang Zhang ,&nbsp;Qiuling Feng ,&nbsp;Lan Bao ,&nbsp;Mingming Gao ,&nbsp;Wen-Yan Gao ,&nbsp;Yen Leng Pak ,&nbsp;Hongyu Mou ,&nbsp;Liwei Chen ,&nbsp;Xing Gao ,&nbsp;Yuchen Hao","doi":"10.1016/j.cclet.2025.112179","DOIUrl":"10.1016/j.cclet.2025.112179","url":null,"abstract":"<div><div>Electrochemical reduction of carbon dioxide (CO<sub>2</sub>RR) into formate and related products is a crucial strategy for sustainable carbon utilization, yet the development of catalysts with both high efficiency and durability remains a central challenge. Among available candidates, two-dimensional (2D) bismuth (Bi) nanosheets stand out because of their earth abundance, low toxicity, and unique ability to stabilize *OCHO intermediates. In this review, we systematically summarize recent advances in the controlled synthesis of 2D Bi nanosheets, covering bottom-up chemical and electrochemical routes, top-down exfoliation, and physical/thermal methods, and highlight the application strategies that enable performance optimization, including defect/strain engineering, heteroatom doping, interface construction, heterostructure coupling, <em>in situ</em> reconstruction, and microenvironment regulation. We further integrate mechanistic insights from <em>in situ/operando</em> characterizations and density functional theory, which clarify the real active sites, dynamic reconstruction, and structure–activity relationships. Finally, we provide a forward-looking perspective on atomic-level structural control, understanding and regulating reconstruction, multi-scale architecture integration, expanding product selectivity beyond formate, device-level optimization, and data-driven catalyst discovery. By bridging synthesis, application strategies, and mechanistic understanding, this timely review establishes a comprehensive framework to guide the rational design of 2D Bi nanosheets and accelerate their translation toward industrially relevant CO<sub>2</sub> electroreduction.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"37 3","pages":"Article 112179"},"PeriodicalIF":8.9,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145788328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2030 roadmap on porous materials for energy and environmental applications 2030年能源和环境应用多孔材料路线图
IF 8.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-27 DOI: 10.1016/j.cclet.2025.112181
Kezhen Qi , Lan Ding , Pitcheri Rosaiah , Zhipeng Yu , Sofia Tikhanova , Vadim Popkov , Ahmed Ismail , Hui Dou , Derong Luo , Feng Liu , Yixue Xu , Shun-Qi Xu , Chunyang Dong , Ramin Hassandoost , Alireza Khataee , Ruiyang Zhang , Ying Zhou , Zijun Huang , Yongming Luo , Dedong He , Aurelio Bifulco
Porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), aerogels, and porous metal oxides, have been extensively explored as versatile platforms for energy conversion, storage, and environmental applications. Over the past five years, remarkable advances have been achieved in the design, synthesis, and functional optimization of these materials, opening new opportunities for practical implementation. In this roadmap, we focus on several key subtopics, including MOFs and COFs for supercapacitors and batteries, electrocatalysis and photocatalysis, heterojunction materials for charge separation, advanced electrocatalysts and photocatalysts based on aerogels, carbon aerogels for environmental remediation, and porous metal oxide nanomaterials for electrocatalysis. The current status, challenges, and opportunities in these areas are systematically summarized. Special attention is given to mechanistic insights, stability enhancement, conductivity improvement, and scalable fabrication strategies that are essential for bridging fundamental research and real-world applications. We believe this roadmap will provide valuable suggestions and updated knowledge for researchers, and offer useful inspiration to accelerate the development of porous materials for sustainable energy and environmental technologies toward 2030.
多孔材料,包括金属有机框架(MOFs)、共价有机框架(COFs)、气凝胶和多孔金属氧化物,作为能量转换、存储和环境应用的通用平台已被广泛探索。在过去的五年中,在这些材料的设计、合成和功能优化方面取得了显著的进展,为实际应用开辟了新的机会。在这个路线图中,我们将重点关注几个关键的子主题,包括用于超级电容器和电池的MOFs和COFs,电催化和光催化,电荷分离的异质结材料,基于气凝胶的先进电催化剂和光催化剂,用于环境修复的碳气凝胶,以及用于电催化的多孔金属氧化物纳米材料。系统总结了这些领域的现状、挑战和机遇。特别关注的是机械洞察力,稳定性增强,电导率改善和可扩展的制造策略,这些对于连接基础研究和实际应用至关重要。我们相信这一路线图将为研究人员提供宝贵的建议和更新的知识,并为加速多孔材料的可持续能源和环境技术的发展提供有用的灵感。
{"title":"2030 roadmap on porous materials for energy and environmental applications","authors":"Kezhen Qi ,&nbsp;Lan Ding ,&nbsp;Pitcheri Rosaiah ,&nbsp;Zhipeng Yu ,&nbsp;Sofia Tikhanova ,&nbsp;Vadim Popkov ,&nbsp;Ahmed Ismail ,&nbsp;Hui Dou ,&nbsp;Derong Luo ,&nbsp;Feng Liu ,&nbsp;Yixue Xu ,&nbsp;Shun-Qi Xu ,&nbsp;Chunyang Dong ,&nbsp;Ramin Hassandoost ,&nbsp;Alireza Khataee ,&nbsp;Ruiyang Zhang ,&nbsp;Ying Zhou ,&nbsp;Zijun Huang ,&nbsp;Yongming Luo ,&nbsp;Dedong He ,&nbsp;Aurelio Bifulco","doi":"10.1016/j.cclet.2025.112181","DOIUrl":"10.1016/j.cclet.2025.112181","url":null,"abstract":"<div><div>Porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), aerogels, and porous metal oxides, have been extensively explored as versatile platforms for energy conversion, storage, and environmental applications. Over the past five years, remarkable advances have been achieved in the design, synthesis, and functional optimization of these materials, opening new opportunities for practical implementation. In this roadmap, we focus on several key subtopics, including MOFs and COFs for supercapacitors and batteries, electrocatalysis and photocatalysis, heterojunction materials for charge separation, advanced electrocatalysts and photocatalysts based on aerogels, carbon aerogels for environmental remediation, and porous metal oxide nanomaterials for electrocatalysis. The current status, challenges, and opportunities in these areas are systematically summarized. Special attention is given to mechanistic insights, stability enhancement, conductivity improvement, and scalable fabrication strategies that are essential for bridging fundamental research and real-world applications. We believe this roadmap will provide valuable suggestions and updated knowledge for researchers, and offer useful inspiration to accelerate the development of porous materials for sustainable energy and environmental technologies toward 2030.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"37 3","pages":"Article 112181"},"PeriodicalIF":8.9,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145788327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pd/NHCcatalyzed ring-opening cross-coupling of gem‑difluorocyclopropanes via a 3,3′-reductive elimination pathway 钯/氨通过3,3 ' -还原消除途径催化宝石-二氟环丙烷开环交叉偶联
IF 8.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-24 DOI: 10.1016/j.cclet.2025.112163
Rong-Nan Yi , Jun Jiang , Wei-Min He
{"title":"Pd/NHCcatalyzed ring-opening cross-coupling of gem‑difluorocyclopropanes via a 3,3′-reductive elimination pathway","authors":"Rong-Nan Yi ,&nbsp;Jun Jiang ,&nbsp;Wei-Min He","doi":"10.1016/j.cclet.2025.112163","DOIUrl":"10.1016/j.cclet.2025.112163","url":null,"abstract":"","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"37 4","pages":"Article 112163"},"PeriodicalIF":8.9,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145974838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-canonical bio-inspired iron catalysis for aliphatic C–H functionalization 非典型生物启发铁催化脂肪族C-H功能化
IF 8.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-19 DOI: 10.1016/j.cclet.2025.112132
Xiao-Hua Chen , Yifan Fan , Zitong Wu , Tao Tu
{"title":"Non-canonical bio-inspired iron catalysis for aliphatic C–H functionalization","authors":"Xiao-Hua Chen ,&nbsp;Yifan Fan ,&nbsp;Zitong Wu ,&nbsp;Tao Tu","doi":"10.1016/j.cclet.2025.112132","DOIUrl":"10.1016/j.cclet.2025.112132","url":null,"abstract":"","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"37 3","pages":"Article 112132"},"PeriodicalIF":8.9,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145735142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chinese Chemical Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1