Pub Date : 2024-11-21DOI: 10.1016/j.cclet.2024.110616
Chu Chu, Yuancheng Qin, Cailing Ni, Jianping Zou
{"title":"Corrigendum to “Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines” [Chinese Chemical Letters 33 (2022) 2736–2740]","authors":"Chu Chu, Yuancheng Qin, Cailing Ni, Jianping Zou","doi":"10.1016/j.cclet.2024.110616","DOIUrl":"10.1016/j.cclet.2024.110616","url":null,"abstract":"","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 2","pages":"Article 110616"},"PeriodicalIF":9.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.cclet.2024.110545
Xue Zheng , Jizhen Xie , Xing Zhang , Weiting Sun , Heyang Zhao , Yantuan Li , Cheng Wang
{"title":"Corrigendum to “An overview of polymeric nanomicelles in clinical trials and on the market” [Chinese Chemical Letters 32 (2021) 243-257]","authors":"Xue Zheng , Jizhen Xie , Xing Zhang , Weiting Sun , Heyang Zhao , Yantuan Li , Cheng Wang","doi":"10.1016/j.cclet.2024.110545","DOIUrl":"10.1016/j.cclet.2024.110545","url":null,"abstract":"","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 2","pages":"Article 110545"},"PeriodicalIF":9.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142650838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.cclet.2024.110562
Hui Liu , Xi Xiang , Jian-Bo Huang , Bi-Hui Zhu , Li-Yun Wang , Yuan-Jiao Tang , Fang-Xue Du , Ling Li , Feng Yan , Lang Ma , Li Qiu
{"title":"Corrigendum to “Ultrasound augmenting injectable chemotaxis hydrogel for articular cartilage repair in osteoarthritis” [Chinese Chemical Letters 32 (2021) 1759-1764]","authors":"Hui Liu , Xi Xiang , Jian-Bo Huang , Bi-Hui Zhu , Li-Yun Wang , Yuan-Jiao Tang , Fang-Xue Du , Ling Li , Feng Yan , Lang Ma , Li Qiu","doi":"10.1016/j.cclet.2024.110562","DOIUrl":"10.1016/j.cclet.2024.110562","url":null,"abstract":"","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 2","pages":"Article 110562"},"PeriodicalIF":9.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.cclet.2024.109934
Jia-Ru Li , Ning Li , Li-Ling He , Jun He
Zirconium-based metal-organic cages (Zr-MOCs) typically exhibit high stability, but their structural and application reports are scarce due to stringent crystallization conditions. We have successfully fluorinated the classical Zr-MOCs (ZrT-3) for the first time, obtaining the fluorinated MOCs (ZrT-3-F). Notably, ZrT-3-F not only inherits the high stability of its parent structure, but also acts as a catalyst for the effective oxidation of benzyl thioether for the first time. The reaction can reach a conversion rate of 99 % in 6 h, and the selectivity reaches 95 %, which far exceeds the non-fluorinated ZrT-3. This work proves that the specific functionalization of the classical Zr-MOCs can further expand their application potential, such as catalysis.
{"title":"Fluorine-functionalized zirconium-organic cages for efficient photocatalytic oxidation of thioanisole","authors":"Jia-Ru Li , Ning Li , Li-Ling He , Jun He","doi":"10.1016/j.cclet.2024.109934","DOIUrl":"10.1016/j.cclet.2024.109934","url":null,"abstract":"<div><div>Zirconium-based metal-organic cages (Zr-MOCs) typically exhibit high stability, but their structural and application reports are scarce due to stringent crystallization conditions. We have successfully fluorinated the classical Zr-MOCs (<strong>ZrT-3</strong>) for the first time, obtaining the fluorinated MOCs (<strong>ZrT-3-F</strong>). Notably, <strong>ZrT-3-F</strong> not only inherits the high stability of its parent structure, but also acts as a catalyst for the effective oxidation of benzyl thioether for the first time. The reaction can reach a conversion rate of 99 % in 6 h, and the selectivity reaches 95 %, which far exceeds the non-fluorinated <strong>ZrT-3</strong>. This work proves that the specific functionalization of the classical Zr-MOCs can further expand their application potential, such as catalysis.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 1","pages":"Article 109934"},"PeriodicalIF":9.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.cclet.2024.110604
Xuanyang Jin, Xincheng Guo, Siyang Dong, Shilan Li, Shengdong Jin, Peng Xia, Shengjun Lu, Yufei Zhang, Haosen Fan
Lithium-sulfur batteries (LSBs) are considered as the most promising energy storage technologies owing to their large theoretical energy density (2500 Wh/kg) and specific capacity (1675 mAh/g). However, the heavy shuttle effect of polysulfides and the growth of lithium dendrites greatly hinder their further development and commercial application. In this paper, cobalt-molybdenum bimetallic carbides heterostructure (Co6Mo6C2@Co@NC) was successfully prepared through chemical etching procedure of ZIF-67 precursor with sodium molybdate and the subsequent high temperature annealing process. The obtained dodecahedral Co6Mo6C2@Co@NC with hollow and porous structure provides large specific surface area and plentiful active sites, which speeds up the chemisorption and catalytic conversion of polysulfides, thus mitigating the shuttle effect of polysulfides and the generation of lithium dendrites. When applied as the LSBs separator modifier layer, the cell with modified separator present excellent rate capability and durable cycling stability. In particular, the cell with Co6Mo6C2@Co@NC/PP separator can maintain the high capacity of 738 mAh/g at the current density of 2 C and the specific capacity of 782.6 mAh/g after 300 cycles at 0.5 C, with the coulombic efficiency (CE) near to 100%. Moreover, the Co6Mo6C2@Co@NC/PP battery exhibits the impressive capacity of 431 mAh/g in high sulfur loading (4.096 mg/cm2) at 0.5 C after 200 cycles. This work paves the way for the development of bimetallic carbides heterostructure multifunctional catalysts for durable Li-S battery applications and reveals the synergistic regulation of polysulfides and lithium dendrites through the optimization of the structure and composition.
{"title":"Synergistic regulation of polysulfides shuttle effect and lithium dendrites from cobalt-molybdenum bimetallic carbides (Co-Mo-C) heterostructure for robust Li-S batteries","authors":"Xuanyang Jin, Xincheng Guo, Siyang Dong, Shilan Li, Shengdong Jin, Peng Xia, Shengjun Lu, Yufei Zhang, Haosen Fan","doi":"10.1016/j.cclet.2024.110604","DOIUrl":"https://doi.org/10.1016/j.cclet.2024.110604","url":null,"abstract":"Lithium-sulfur batteries (LSBs) are considered as the most promising energy storage technologies owing to their large theoretical energy density (2500 Wh/kg) and specific capacity (1675 mAh/g). However, the heavy shuttle effect of polysulfides and the growth of lithium dendrites greatly hinder their further development and commercial application. In this paper, cobalt-molybdenum bimetallic carbides heterostructure (Co<sub>6</sub>Mo<sub>6</sub>C<sub>2</sub>@Co@NC) was successfully prepared through chemical etching procedure of ZIF-67 precursor with sodium molybdate and the subsequent high temperature annealing process. The obtained dodecahedral Co<sub>6</sub>Mo<sub>6</sub>C<sub>2</sub>@Co@NC with hollow and porous structure provides large specific surface area and plentiful active sites, which speeds up the chemisorption and catalytic conversion of polysulfides, thus mitigating the shuttle effect of polysulfides and the generation of lithium dendrites. When applied as the LSBs separator modifier layer, the cell with modified separator present excellent rate capability and durable cycling stability. In particular, the cell with Co<sub>6</sub>Mo<sub>6</sub>C<sub>2</sub>@Co@NC/PP separator can maintain the high capacity of 738 mAh/g at the current density of 2 C and the specific capacity of 782.6 mAh/g after 300 cycles at 0.5 C, with the coulombic efficiency (CE) near to 100%. Moreover, the Co<sub>6</sub>Mo<sub>6</sub>C<sub>2</sub>@Co@NC/PP battery exhibits the impressive capacity of 431 mAh/g in high sulfur loading (4.096 mg/cm<sup>2</sup>) at 0.5 C after 200 cycles. This work paves the way for the development of bimetallic carbides heterostructure multifunctional catalysts for durable Li-S battery applications and reveals the synergistic regulation of polysulfides and lithium dendrites through the optimization of the structure and composition.","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"79 1","pages":""},"PeriodicalIF":9.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.cclet.2024.110582
Qiang Feng, Jindong Hao, Ya Hu, Rong Fu, Wei Wei, Dong Yi
A convenient photocatalytic multi-component reaction of alkenes, quinoxalin-2(1H)-ones, and diazo compounds has been developed in the presence of water. A number of ester-containing quinoxalin-2(1H)-ones could be efficiently obtained in moderate to good yields at room temperature. This metal-free visible-light-driven tandem reaction was conducted through proton-coupled electron transfer (PCET) process using water as the hydrogen donor and 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) as the photocatalyst.
{"title":"Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor","authors":"Qiang Feng, Jindong Hao, Ya Hu, Rong Fu, Wei Wei, Dong Yi","doi":"10.1016/j.cclet.2024.110582","DOIUrl":"https://doi.org/10.1016/j.cclet.2024.110582","url":null,"abstract":"A convenient photocatalytic multi-component reaction of alkenes, quinoxalin-2(1<em>H</em>)-ones, and diazo compounds has been developed in the presence of water. A number of ester-containing quinoxalin-2(1<em>H</em>)-ones could be efficiently obtained in moderate to good yields at room temperature. This metal-free visible-light-driven tandem reaction was conducted through proton-coupled electron transfer (PCET) process using water as the hydrogen donor and 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) as the photocatalyst.","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"126 1","pages":""},"PeriodicalIF":9.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As the chemical industry expands, the use of benzene, toluene, and xylene (collectively known as BTX) in industrial production has increased greatly. Meanwhile, the toxic nature and potential health hazards of BTX gases cannot be ignored due to low-concentration leaks underline the critical need for rapid and real-time monitoring of these gases. Chemiresistive metal oxide semiconductor (MOS)-based gas sensors, which are extensively used for gas detection in both industrial settings and everyday life, emerge as one of the optimal solutions for trace BTX detection. These sensors are highly valued for their high sensitivity and low detection limits. Nevertheless, the improvement of selectivity towards specific BTX gases to achieve efficient and precise detection still remains challenging. This review summarizes the chemiresistive MOS-based gas sensors designed for BTX detection, categorizing them based on the components of sensing materials-basically into three groups: single-component, single heterojunction, and multiple heterojunctions gas sensing materials. Further, the review proposes the future application prospects of chemiresistive MOS-based BTX gas sensors, with specific emphasis on their significance in promoting industrial safety and environmental monitoring.
随着化学工业的发展,苯、甲苯和二甲苯(统称为 BTX)在工业生产中的使用大大增加。同时,由于低浓度泄漏,BTX 气体的毒性和对健康的潜在危害不容忽视,因此亟需对这些气体进行快速、实时的监测。基于化学电阻金属氧化物半导体(MOS)的气体传感器被广泛用于工业环境和日常生活中的气体检测,是痕量 BTX 检测的最佳解决方案之一。这些传感器因灵敏度高、检测限低而备受推崇。然而,如何提高对特定 BTX 气体的选择性以实现高效、精确的检测仍然是一个挑战。本综述总结了为检测 BTX 而设计的基于化学电阻 MOS 的气体传感器,并根据传感材料的成分将其基本分为三类:单组分、单异质结和多异质结气体传感材料。此外,综述还提出了基于化学电阻 MOS 的 BTX 气体传感器的未来应用前景,并特别强调了其在促进工业安全和环境监测方面的意义。
{"title":"Trace detection of benzene, toluene and xylene (BTX) by chemiresistive metal oxide-based gas sensors: Recent advances in heterojunction materials design","authors":"Yidan Chen, Junzhou Xu, Yanjun Pan, Qi Cao, Kaiping Yuan","doi":"10.1016/j.cclet.2024.110606","DOIUrl":"https://doi.org/10.1016/j.cclet.2024.110606","url":null,"abstract":"As the chemical industry expands, the use of benzene, toluene, and xylene (collectively known as BTX) in industrial production has increased greatly. Meanwhile, the toxic nature and potential health hazards of BTX gases cannot be ignored due to low-concentration leaks underline the critical need for rapid and real-time monitoring of these gases. Chemiresistive metal oxide semiconductor (MOS)-based gas sensors, which are extensively used for gas detection in both industrial settings and everyday life, emerge as one of the optimal solutions for trace BTX detection. These sensors are highly valued for their high sensitivity and low detection limits. Nevertheless, the improvement of selectivity towards specific BTX gases to achieve efficient and precise detection still remains challenging. This review summarizes the chemiresistive MOS-based gas sensors designed for BTX detection, categorizing them based on the components of sensing materials-basically into three groups: single-component, single heterojunction, and multiple heterojunctions gas sensing materials. Further, the review proposes the future application prospects of chemiresistive MOS-based BTX gas sensors, with specific emphasis on their significance in promoting industrial safety and environmental monitoring.","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"87 1","pages":""},"PeriodicalIF":9.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.cclet.2024.110579
Hao-Cong Li, Ming Zhang, Qiyan Lv, Kai Sun, Xiao-Lan Chen, Lingbo Qu, Bing Yu
The photoinduced ligand-to-metal charge transfer (LMCT) process has been extensively investigated, however, the recovery of photocatalysts has remained a persistent challenge in the field. In light of this issue, a novel approach involving the development of iron-based ionic liquids as photocatalysts has been pursued for the first time, with the goal of simultaneously facilitating the LMCT process and addressing the issue of photocatalyst recovery. Remarkably, the iron-based ionic liquid 1‑butyl‑3-methylimidazolium tetrachloroferrate (C4mim-FeCl4) demonstrates exceptional recyclability and stability for the photocatalytic hydroacylation of olefins. This study will pave the way for new approaches to photocatalytic organic synthesis using ionic liquids as recyclable photocatalysts.
{"title":"Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins","authors":"Hao-Cong Li, Ming Zhang, Qiyan Lv, Kai Sun, Xiao-Lan Chen, Lingbo Qu, Bing Yu","doi":"10.1016/j.cclet.2024.110579","DOIUrl":"10.1016/j.cclet.2024.110579","url":null,"abstract":"<div><div>The photoinduced ligand-to-metal charge transfer (LMCT) process has been extensively investigated, however, the recovery of photocatalysts has remained a persistent challenge in the field. In light of this issue, a novel approach involving the development of iron-based ionic liquids as photocatalysts has been pursued for the first time, with the goal of simultaneously facilitating the LMCT process and addressing the issue of photocatalyst recovery. Remarkably, the iron-based ionic liquid 1‑butyl‑3-methylimidazolium tetrachloroferrate (C<sub>4</sub>mim-FeCl<sub>4</sub>) demonstrates exceptional recyclability and stability for the photocatalytic hydroacylation of olefins. This study will pave the way for new approaches to photocatalytic organic synthesis using ionic liquids as recyclable photocatalysts.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 2","pages":"Article 110579"},"PeriodicalIF":9.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}