{"title":"Trends of surface ozone based on hourly concentrations in the Beijing–Tianjin–Hebei region during 2017–2021","authors":"Xiaoyan Wang, Huihui Zheng, Bing Liu, Shuyan Xie, Yonghai Huang, Shuai Wang","doi":"10.1016/j.aosl.2024.100514","DOIUrl":null,"url":null,"abstract":"<div><div>As a typical secondary air pollutant, surface ozone has been monitored routinely since 2013 in China. Most studies on the spatiotemporal variation of ozone have been centered around the daily maximum 8-h average, with little attention paid to the trends of hourly ozone, especially hourly ozone exceedances. Focusing on hourly ozone exceedances and peak values, the spatiotemporal trends of hourly ozone at 77 sites in 13 cities of the Beijing–Tianjin–Hebei (BTH) region during 2017–2021 were analyzed in this study. The number of hours with exceedances (<em>N</em><sub>H200</sub>) in 2019 was nearly three times that of 2021. On a five-year average, the percentage of cumulative <em>N</em><sub>H200</sub> in June accounted for up to 40.5 % of all hourly exceedances. Cities in central Hebei Province had the highest cumulative annual <em>N</em><sub>H200</sub>. June had the highest average hourly ozone exceeded multiples of 0.158. The top two cities with the highest average exceeded multiple were Tangshan (0.166) and Beijing (0.158). Tangshan and Xingtai ranked as the top two in terms of the mean of the 10 highest daily maximum ozone concentrations (MTDM), with 286.74 and 285.37 µg m<sup>−3</sup>, respectively. The gap between the MTDM and the daily maximum of hourly ozone averaged over all sites had narrowed to 97.88 µg m<sup>−3</sup> in 2021, much lower than that in other years, which indicated that the stability and convergence of ozone pollution in BTH region had been enhanced in 2021 to some extent.</div><div>摘要</div><div>本文以京津冀地区为研究对象, 采用国际常用的评价指标, 在分析2017–2021年臭氧小时浓度变化趋势的基础上, 重点讨论了小时浓度超标情况及其峰值水平. 结果显示, 2019年臭氧小时浓度超标数约为2021年的3倍, 6月份小时浓度超标数占比高达40.5%, 河北中部城市小时浓度超标情况突出; 2017年和2019年臭氧小时浓度超标倍数在高位区间的占比相对最高, 唐山和邢台的小时浓度峰值水平相对较高. 本文可为后续进一步研究局地臭氧污染特征和异常污染事件提供基础参考.</div></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 6","pages":"Article 100514"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283424000631","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As a typical secondary air pollutant, surface ozone has been monitored routinely since 2013 in China. Most studies on the spatiotemporal variation of ozone have been centered around the daily maximum 8-h average, with little attention paid to the trends of hourly ozone, especially hourly ozone exceedances. Focusing on hourly ozone exceedances and peak values, the spatiotemporal trends of hourly ozone at 77 sites in 13 cities of the Beijing–Tianjin–Hebei (BTH) region during 2017–2021 were analyzed in this study. The number of hours with exceedances (NH200) in 2019 was nearly three times that of 2021. On a five-year average, the percentage of cumulative NH200 in June accounted for up to 40.5 % of all hourly exceedances. Cities in central Hebei Province had the highest cumulative annual NH200. June had the highest average hourly ozone exceeded multiples of 0.158. The top two cities with the highest average exceeded multiple were Tangshan (0.166) and Beijing (0.158). Tangshan and Xingtai ranked as the top two in terms of the mean of the 10 highest daily maximum ozone concentrations (MTDM), with 286.74 and 285.37 µg m−3, respectively. The gap between the MTDM and the daily maximum of hourly ozone averaged over all sites had narrowed to 97.88 µg m−3 in 2021, much lower than that in other years, which indicated that the stability and convergence of ozone pollution in BTH region had been enhanced in 2021 to some extent.