An unstructured body-of-revolution electromagnetic particle-in-cell algorithm with radial perfectly matched layers and dual polarizations

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Physics Communications Pub Date : 2024-05-16 DOI:10.1016/j.cpc.2024.109247
Dong-Yeop Na , Fernando L. Teixeira , Yuri A. Omelchenko
{"title":"An unstructured body-of-revolution electromagnetic particle-in-cell algorithm with radial perfectly matched layers and dual polarizations","authors":"Dong-Yeop Na ,&nbsp;Fernando L. Teixeira ,&nbsp;Yuri A. Omelchenko","doi":"10.1016/j.cpc.2024.109247","DOIUrl":null,"url":null,"abstract":"<div><p>A novel electromagnetic particle-in-cell algorithm has been developed for fully kinetic plasma simulations on unstructured (irregular) meshes in complex body-of-revolution geometries. The algorithm, implemented in the BORPIC++ code, utilizes a set of field scalings and a coordinate mapping, reducing the Maxwell field problem in a cylindrical system to a Cartesian finite element Maxwell solver in the meridian plane. The latter obviates the cylindrical coordinate singularity in the symmetry axis. The choice of an unstructured finite element discretization enhances the geometrical flexibility of the BORPIC++ solver compared to the more traditional finite difference solvers. Symmetries in Maxwell's equations are explored to decompose the problem into two dual polarization states with isomorphic representations that enable code reuse. The particle-in-cell scatter and gather steps preserve charge-conservation at the discrete level. Our previous algorithm (BORPIC+) discretized the <strong>E</strong> and <strong>B</strong> field components of TE<sup><em>ϕ</em></sup> and TM<sup><em>ϕ</em></sup> polarizations on the finite element (primal) mesh <span>[1]</span>, <span>[2]</span>. Here, we employ a new field-update scheme. Using the same finite element (primal) mesh, this scheme advances two sets of field components independently: (1) <strong>E</strong> and <strong>B</strong> of TE<sup><em>ϕ</em></sup> polarized fields, (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>ϕ</mi></mrow></msub></math></span>) and (2) <strong>D</strong> and <strong>H</strong> of TM<sup><em>ϕ</em></sup> polarized fields, (<span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>ϕ</mi></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>ρ</mi></mrow></msub></math></span>). Since these field updates are not explicitly coupled, the new field solver obviates the coordinate singularity, which otherwise arises at the cylindrical symmetric axis, <span><math><mi>ρ</mi><mo>=</mo><mn>0</mn></math></span> when defining the discrete Hodge matrices (generalized finite element mass matrices). A cylindrical perfectly matched layer is implemented as a boundary condition in the radial direction to simulate open space problems, with periodic boundary conditions in the axial direction. We investigate effects of charged particles moving next to the cylindrical perfectly matched layer. We model azimuthal currents arising from rotational motion of charged rings, which produce TM<sup><em>ϕ</em></sup> polarized fields. Several numerical examples are provided to illustrate the first application of the algorithm.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001046552400170X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A novel electromagnetic particle-in-cell algorithm has been developed for fully kinetic plasma simulations on unstructured (irregular) meshes in complex body-of-revolution geometries. The algorithm, implemented in the BORPIC++ code, utilizes a set of field scalings and a coordinate mapping, reducing the Maxwell field problem in a cylindrical system to a Cartesian finite element Maxwell solver in the meridian plane. The latter obviates the cylindrical coordinate singularity in the symmetry axis. The choice of an unstructured finite element discretization enhances the geometrical flexibility of the BORPIC++ solver compared to the more traditional finite difference solvers. Symmetries in Maxwell's equations are explored to decompose the problem into two dual polarization states with isomorphic representations that enable code reuse. The particle-in-cell scatter and gather steps preserve charge-conservation at the discrete level. Our previous algorithm (BORPIC+) discretized the E and B field components of TEϕ and TMϕ polarizations on the finite element (primal) mesh [1], [2]. Here, we employ a new field-update scheme. Using the same finite element (primal) mesh, this scheme advances two sets of field components independently: (1) E and B of TEϕ polarized fields, (Ez,Eρ,Bϕ) and (2) D and H of TMϕ polarized fields, (Dϕ,Hz,Hρ). Since these field updates are not explicitly coupled, the new field solver obviates the coordinate singularity, which otherwise arises at the cylindrical symmetric axis, ρ=0 when defining the discrete Hodge matrices (generalized finite element mass matrices). A cylindrical perfectly matched layer is implemented as a boundary condition in the radial direction to simulate open space problems, with periodic boundary conditions in the axial direction. We investigate effects of charged particles moving next to the cylindrical perfectly matched layer. We model azimuthal currents arising from rotational motion of charged rings, which produce TMϕ polarized fields. Several numerical examples are provided to illustrate the first application of the algorithm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有径向完全匹配层和双极化的非结构化旋转体电磁粒子单元算法
针对复杂旋转体几何结构中的非结构(不规则)网格上的全动能等离子体模拟,我们开发了一种新型电磁粒子-单元算法。该算法在 BORPIC++ 代码中实现,利用一组场标度和坐标映射,将圆柱系统中的麦克斯韦场问题简化为子午线平面上的笛卡尔有限元麦克斯韦求解器。后者避免了对称轴上的圆柱坐标奇异性。与传统的有限差分求解器相比,非结构化有限元离散化的选择增强了 BORPIC++ 求解器的几何灵活性。通过探索麦克斯韦方程的对称性,将问题分解为两个具有同构表示的双重极化状态,从而实现了代码的重复使用。粒子在小室中的散射和聚集步骤在离散水平上保持了电荷守恒。我们以前的算法(BORPIC+)在有限元(基元)网格上离散了 TEϕ 和 TMϕ 极化的 E 和 B 场分量[1],[2]。在这里,我们采用了一种新的场更新方案。该方案使用相同的有限元(基元)网格,独立更新两组场分量:(1) TEϕ 极化场的 E 和 B(Ez,Eρ,Bϕ);(2) TMϕ 极化场的 D 和 H(Dϕ,Hz,Hρ)。由于这些场更新没有显式耦合,新的场求解器避免了坐标奇异性,否则在定义离散霍奇矩阵(广义有限元质量矩阵)时,会在圆柱对称轴 ρ=0 处产生奇异性。为了模拟开放空间问题,在径向实施了圆柱完全匹配层作为边界条件,在轴向实施了周期性边界条件。我们研究了在圆柱完全匹配层旁边运动的带电粒子的影响。我们模拟了带电环旋转运动产生的方位电流,它产生了 TMϕ 极化场。我们提供了几个数值示例来说明该算法的首次应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
期刊最新文献
A novel model for direct numerical simulation of suspension dynamics with arbitrarily shaped convex particles Editorial Board Study α decay and proton emission based on data-driven symbolic regression Efficient determination of free energies of non-ideal solid solutions via hybrid Monte Carlo simulations 1D drift-kinetic numerical model based on semi-implicit particle-in-cell method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1