Risk-averse Reinforcement Learning for Portfolio Optimization

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS ICT Express Pub Date : 2024-08-01 DOI:10.1016/j.icte.2024.04.010
{"title":"Risk-averse Reinforcement Learning for Portfolio Optimization","authors":"","doi":"10.1016/j.icte.2024.04.010","DOIUrl":null,"url":null,"abstract":"<div><p>This investigation explores Reinforcement Learning (RL) for dynamic portfolio optimization with risk assessment. The challenges include market complexity, uncertain reactions, and regulatory requirements for risk-averse decisions. Our solution leverages Bayesian Neural Network (BNN) to capture uncertainties. We successfully implemented a risk-averse Reinforcement Learning algorithm, achieving 18 percent lower risk. Reinforcement Learning with risk-aversion shows promise for optimizing portfolios for risk-averse investors.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 4","pages":"Pages 857-862"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S240595952400047X/pdfft?md5=5385b709fbe59482bff19744529a49de&pid=1-s2.0-S240595952400047X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240595952400047X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This investigation explores Reinforcement Learning (RL) for dynamic portfolio optimization with risk assessment. The challenges include market complexity, uncertain reactions, and regulatory requirements for risk-averse decisions. Our solution leverages Bayesian Neural Network (BNN) to capture uncertainties. We successfully implemented a risk-averse Reinforcement Learning algorithm, achieving 18 percent lower risk. Reinforcement Learning with risk-aversion shows promise for optimizing portfolios for risk-averse investors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
投资组合优化的风险规避强化学习
本研究探讨了强化学习(RL)对动态投资组合优化和风险评估的作用。面临的挑战包括市场复杂性、不确定反应以及规避风险决策的监管要求。我们的解决方案利用贝叶斯神经网络(BNN)来捕捉不确定性。我们成功实施了风险规避强化学习算法,将风险降低了 18%。具有风险规避功能的强化学习算法有望为风险规避型投资者优化投资组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
期刊最新文献
Editorial Board Performance analysis of multi-hop low earth orbit satellite network over mixed RF/FSO links Symbol-level precoding scheme robust to channel estimation errors in wireless fading channels Hybrid Approach with Membership-Density Based Oversampling for handling multi-class imbalance in Internet Traffic Identification with overlapping and noise Integrated beamforming and trajectory optimization algorithm for RIS-assisted UAV system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1