A differentiable programming framework for spin models

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Physics Communications Pub Date : 2024-05-10 DOI:10.1016/j.cpc.2024.109234
Tiago S. Farias , Vitor V. Schultz , José C.M. Mombach , Jonas Maziero
{"title":"A differentiable programming framework for spin models","authors":"Tiago S. Farias ,&nbsp;Vitor V. Schultz ,&nbsp;José C.M. Mombach ,&nbsp;Jonas Maziero","doi":"10.1016/j.cpc.2024.109234","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a novel framework for simulating spin models using differentiable programming, an approach that leverages the advancements in machine learning and computational efficiency. We focus on three distinct spin systems: the Ising model, the Potts model, and the Cellular Potts model, demonstrating the practicality and scalability of our framework in modeling these complex systems. Additionally, this framework allows for the optimization of spin models, which can adjust the parameters of a system by a defined objective function. In order to simulate these models, we adapt the Metropolis-Hastings algorithm to a differentiable programming paradigm, employing batched tensors for simulating spin lattices. This adaptation not only facilitates the integration with existing deep learning tools but also significantly enhances computational speed through parallel processing capabilities, as it can be implemented on different hardware architectures, including GPUs and TPUs.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524001577","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a novel framework for simulating spin models using differentiable programming, an approach that leverages the advancements in machine learning and computational efficiency. We focus on three distinct spin systems: the Ising model, the Potts model, and the Cellular Potts model, demonstrating the practicality and scalability of our framework in modeling these complex systems. Additionally, this framework allows for the optimization of spin models, which can adjust the parameters of a system by a defined objective function. In order to simulate these models, we adapt the Metropolis-Hastings algorithm to a differentiable programming paradigm, employing batched tensors for simulating spin lattices. This adaptation not only facilitates the integration with existing deep learning tools but also significantly enhances computational speed through parallel processing capabilities, as it can be implemented on different hardware architectures, including GPUs and TPUs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自旋模型的可微编程框架
我们介绍了一种利用可微编程模拟自旋模型的新框架,这种方法充分利用了机器学习和计算效率方面的进步。我们重点研究了三种不同的自旋系统:伊辛模型、波茨模型和蜂窝波茨模型,证明了我们的框架在模拟这些复杂系统时的实用性和可扩展性。此外,该框架还允许对自旋模型进行优化,通过定义的目标函数调整系统参数。为了模拟这些模型,我们将 Metropolis-Hastings 算法调整为可微编程范式,采用批量张量来模拟自旋网格。这种调整不仅便于与现有的深度学习工具集成,还能通过并行处理能力显著提高计算速度,因为它可以在不同的硬件架构上实现,包括 GPU 和 TPU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
期刊最新文献
A novel model for direct numerical simulation of suspension dynamics with arbitrarily shaped convex particles Editorial Board Study α decay and proton emission based on data-driven symbolic regression Efficient determination of free energies of non-ideal solid solutions via hybrid Monte Carlo simulations 1D drift-kinetic numerical model based on semi-implicit particle-in-cell method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1