Nooral Amin , Yeyao Du , Liu Lu , Mohamed A.S. Khalifa , Naveed Ahmad , Sheraz Ahmad , Piwu Wang
{"title":"GmNAC3 acts as a key regulator in soybean against drought stress","authors":"Nooral Amin , Yeyao Du , Liu Lu , Mohamed A.S. Khalifa , Naveed Ahmad , Sheraz Ahmad , Piwu Wang","doi":"10.1016/j.cpb.2024.100346","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>NAC</em> (NAM, ATAF and CUC) family is one of the largest transcription factor (TF) families in plant that are involved in the regulatory mechanisms of plant growth and development as well as responses to abiotic stresses. However, the underlying molecular mechanism of drought-responsive <em>NAC</em> family members in soybean still remains inexplicit. In this study, a total of 179 <em>GmNAC</em> genes were identified in the soybean genome. We discovered that the majority of <em>GmNAC</em> members have more than three exons and share a gene and motif structure that is mostly conserved at the N-terminus. Phylogenetic analysis suggested that soybean <em>GmNAC</em> proteins were divided into 10 separate groups. The analysis of cis-elements highlighted the potential role of <em>GmNAC</em> genes in various hormonal and defense related activities. In addition, most of the <em>GmNAC</em> genes showed notable expression in roots and leaves, suggesting their likely role in abiotic stress adaptation. The overexpression of <em>GmNAC3-OE</em> in Arabidopsis increased tolerance to drought stress. Similarly, the <em>GmNAC3-OE</em> plants displayed better survival rates, root length and antioxidant activities. Enhanced expression of stress specific genes in <em>GmNAC3-OE</em> was also recorded. Our findings revealed the potential role of <em>GmNAC3</em> gene role in regulating soybean response to drought stress and could be used as a potential marker to generate stress resilient plants.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"38 ","pages":"Article 100346"},"PeriodicalIF":5.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000288/pdfft?md5=d7d279db199cadeddf4f86774bda63ce&pid=1-s2.0-S2214662824000288-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662824000288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The NAC (NAM, ATAF and CUC) family is one of the largest transcription factor (TF) families in plant that are involved in the regulatory mechanisms of plant growth and development as well as responses to abiotic stresses. However, the underlying molecular mechanism of drought-responsive NAC family members in soybean still remains inexplicit. In this study, a total of 179 GmNAC genes were identified in the soybean genome. We discovered that the majority of GmNAC members have more than three exons and share a gene and motif structure that is mostly conserved at the N-terminus. Phylogenetic analysis suggested that soybean GmNAC proteins were divided into 10 separate groups. The analysis of cis-elements highlighted the potential role of GmNAC genes in various hormonal and defense related activities. In addition, most of the GmNAC genes showed notable expression in roots and leaves, suggesting their likely role in abiotic stress adaptation. The overexpression of GmNAC3-OE in Arabidopsis increased tolerance to drought stress. Similarly, the GmNAC3-OE plants displayed better survival rates, root length and antioxidant activities. Enhanced expression of stress specific genes in GmNAC3-OE was also recorded. Our findings revealed the potential role of GmNAC3 gene role in regulating soybean response to drought stress and could be used as a potential marker to generate stress resilient plants.
期刊介绍:
Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.