{"title":"Toward efficient fabrication of microstructures on SiC with nanometric surface quality","authors":"","doi":"10.1016/j.cirp.2024.04.058","DOIUrl":null,"url":null,"abstract":"<div><p>Microstructures with high surface integrity are difficult to efficiently fabricate on silicon carbide. A method for modifying the band gap via ion implantation is proposed, which induces a crystalline-to-amorphous transition so that the laser intensity for material removal is substantially reduced. The structure can be generated by a single pulse, considerably increasing the efficiency. Furthermore, chemical etching is introduced to make the process material selective and self-limited. This new approach achieves not only subnanometric roughness but also less subsurface damage and a remarkable improvement in controllability.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 157-160"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000726","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microstructures with high surface integrity are difficult to efficiently fabricate on silicon carbide. A method for modifying the band gap via ion implantation is proposed, which induces a crystalline-to-amorphous transition so that the laser intensity for material removal is substantially reduced. The structure can be generated by a single pulse, considerably increasing the efficiency. Furthermore, chemical etching is introduced to make the process material selective and self-limited. This new approach achieves not only subnanometric roughness but also less subsurface damage and a remarkable improvement in controllability.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.