{"title":"Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems","authors":"","doi":"10.1016/j.cjsc.2024.100335","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>To construct efficient room-temperature phosphorescence (RTP) doping systems by simple doping methods, isomers 2-(2-(9H-carbazol-9-yl)benzyl)malononitrile (o-CzCN), 2-(3-(9H-carbazol-9-yl)benzyl)malononitrile (m-CzCN) and 2-(4-(9H-carbazol-9-yl)benzyl)malononitrile (p-CzCN) were designed and synthesized by choosing commercial carbazole. Based on the structure-function relationships of three isomers and excellent compatibility between carbazole and benzocarbazole, 2-(3-(9H-carbazol-9-yl)benzyl)malononitrile (Lm-CzCN) and 2-(3-(5H-benzo[b]carbazol-5-yl)benzyl)malononitrile (m-BCzCN) were prepared by self-made carbazole and 2-naphthylamine. Then, Lm-CzCN/m-BCzCN was constructed and optimized by dissolution and rapid evaporation, as well as tuning the mass ratios between Lm-CzCN and m-BCzCN. Lm-CzCN shows excitation dependent RTP and afterglow lifetimes, as well as concentration dependent RTP emission in poly(vinyl alcohol) (PVA) films, while 1% m-BCzCN@PVA film emits bright green afterglow, with RTP and afterglow lifetimes of 2.303 and 17 s in turn, as well as </span>RTP quantum yield<span> of 0.22. More importantly, Lm-CzCN/m-BCzCN presents ultra-long room temperature phosphorescence, with RTP and afterglow lifetimes of 597.58 ms and 8 s, respectively. Moreover, crystals m-CzCN and p-CzCN, as well as Lm-CzCN/m-BCzCN can be excited by visible light of 440 nm, showing yellow afterglow of 1–4 s. Noteworthy, polymorphism o-CzCN</span></span><sub>Y</sub> and o-CzCN<sub>B</sub><span> were found, whose different emission was investigated by molecular conformation, intermolecular arrangement and stacking patterns. Finally, multiple encryptions were successfully constructed based on the different luminescent properties.</span></p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 9","pages":"Article 100335"},"PeriodicalIF":5.9000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"结构化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586124001624","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
To construct efficient room-temperature phosphorescence (RTP) doping systems by simple doping methods, isomers 2-(2-(9H-carbazol-9-yl)benzyl)malononitrile (o-CzCN), 2-(3-(9H-carbazol-9-yl)benzyl)malononitrile (m-CzCN) and 2-(4-(9H-carbazol-9-yl)benzyl)malononitrile (p-CzCN) were designed and synthesized by choosing commercial carbazole. Based on the structure-function relationships of three isomers and excellent compatibility between carbazole and benzocarbazole, 2-(3-(9H-carbazol-9-yl)benzyl)malononitrile (Lm-CzCN) and 2-(3-(5H-benzo[b]carbazol-5-yl)benzyl)malononitrile (m-BCzCN) were prepared by self-made carbazole and 2-naphthylamine. Then, Lm-CzCN/m-BCzCN was constructed and optimized by dissolution and rapid evaporation, as well as tuning the mass ratios between Lm-CzCN and m-BCzCN. Lm-CzCN shows excitation dependent RTP and afterglow lifetimes, as well as concentration dependent RTP emission in poly(vinyl alcohol) (PVA) films, while 1% m-BCzCN@PVA film emits bright green afterglow, with RTP and afterglow lifetimes of 2.303 and 17 s in turn, as well as RTP quantum yield of 0.22. More importantly, Lm-CzCN/m-BCzCN presents ultra-long room temperature phosphorescence, with RTP and afterglow lifetimes of 597.58 ms and 8 s, respectively. Moreover, crystals m-CzCN and p-CzCN, as well as Lm-CzCN/m-BCzCN can be excited by visible light of 440 nm, showing yellow afterglow of 1–4 s. Noteworthy, polymorphism o-CzCNY and o-CzCNB were found, whose different emission was investigated by molecular conformation, intermolecular arrangement and stacking patterns. Finally, multiple encryptions were successfully constructed based on the different luminescent properties.
期刊介绍:
Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.