首页 > 最新文献

结构化学最新文献

英文 中文
Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation 通过自旋交叉和菱形变形的协同作用实现巨型各向异性热膨胀
IF 2.2 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-09-12 DOI: 10.1016/j.cjsc.2024.100430
Shuai Liang, Wen-Jing Jiang, Ji-Xiang Hu
{"title":"Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation","authors":"Shuai Liang, Wen-Jing Jiang, Ji-Xiang Hu","doi":"10.1016/j.cjsc.2024.100430","DOIUrl":"https://doi.org/10.1016/j.cjsc.2024.100430","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"99 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural determination and exotic resistive behaviour of α-RuI3 under high-pressure 高压下 α-RuI3 的结构测定和异域电阻行为
IF 2.2 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-09-12 DOI: 10.1016/j.cjsc.2024.100429
Zhongxiong Sun, Haili Song, Mei-Huan Zhao, Yijie Zeng, Man-Rong Li
{"title":"Structural determination and exotic resistive behaviour of α-RuI3 under high-pressure","authors":"Zhongxiong Sun, Haili Song, Mei-Huan Zhao, Yijie Zeng, Man-Rong Li","doi":"10.1016/j.cjsc.2024.100429","DOIUrl":"https://doi.org/10.1016/j.cjsc.2024.100429","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"20 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Printable magnetoresistive sensors: A crucial step toward unconventional magnetoelectronics 可印刷磁阻传感器:迈向非常规磁电子学的关键一步
IF 2.2 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-09-11 DOI: 10.1016/j.cjsc.2024.100428
Lin Guo, Rui Xu, Denys Makarov
{"title":"Printable magnetoresistive sensors: A crucial step toward unconventional magnetoelectronics","authors":"Lin Guo, Rui Xu, Denys Makarov","doi":"10.1016/j.cjsc.2024.100428","DOIUrl":"https://doi.org/10.1016/j.cjsc.2024.100428","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"32 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework 二维钴(II)金属有机框架对有机染料和碘的选择性吸附
IF 2.2 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-09-04 DOI: 10.1016/j.cjsc.2024.100427
Muhammad Riaz, Rakesh Kumar Gupta, Di Sun, Mohammad Azam, Ping Cui
The development of effective adsorbent materials for capturing organic dyes and iodine is crucial to reduce the environmental impact and ensure human health. In this context, a two-dimensional (2D) Co-based metal-organic framework SDU-CP- was rationally designed with 4-(4-carboxyphenyl)-1,2,4-triazole (Hcpt) and 2,4,6-tri(4-pyridinyl)-1,3,5-triazine (tpt) as organic linkers. The SDU-CP- was comprehensively characterized using single-crystal X-ray diffraction analysis, thermogravimetric analysis, fourier transform infrared spectroscopy, raman spectroscopy, powder x-ray diffraction analysis and UV-vis spectroscopy. Molecular docking were conducted to elucidate potential binding sites on SDU-CP- for effective interactions with RhB and ST. Featuring negatively charged surface and trigonal microporous channels, SDU-CP- exhibits excellent adsorption capacities of organic dyes (919.2 ​mg/g for Rhodamine B and 1565 ​mg/g for Safranine T) as well as iodine (563.0 ​mg/g in solution and 1100 ​mg/g in the vapor phase). The exceptional adsorption performance of SDU-CP- for cationic dyes can be ascribed to the electrostatic interaction facilitated by negatively charged zeta potential and the size-matching principle, whereas the pyridine active sites in channels significantly enhance the binding affinity for iodine. Moreover, SDU-CP- can serve as chromatographic column filters for the rapid adsorption and separation of dyes. The results demonstrate the excellent selective adsorption performance of SDU-CP-, highlighting its potential for environmental and industrial applications.
开发捕捉有机染料和碘的有效吸附材料对于减少环境影响和确保人类健康至关重要。在此背景下,以 4-(4-羧基苯基)-1,2,4-三唑(Hcpt)和 2,4,6-三(4-吡啶基)-1,3,5-三嗪(tpt)为有机连接体,合理设计了一种二维(2D)Co 基金属有机框架 SDU-CP-。使用单晶 X 射线衍射分析、热重分析、傅立叶变换红外光谱、喇曼光谱、粉末 X 射线衍射分析和紫外可见光谱对 SDU-CP- 进行了全面表征。通过分子对接,阐明了 SDU-CP- 与 RhB 和 ST 有效相互作用的潜在结合位点。SDU-CP- 具有带负电荷的表面和三棱形微孔通道,对有机染料(罗丹明 B 为 919.2 毫克/克,莎呋宁 T 为 1565 毫克/克)和碘(溶液中为 563.0 毫克/克,气相中为 1100 毫克/克)具有出色的吸附能力。SDU-CP- 对阳离子染料的优异吸附性能可归因于带负电的 Zeta 电位和尺寸匹配原理所促进的静电相互作用,而通道中的吡啶活性位点则显著增强了对碘的结合亲和力。此外,SDU-CP- 还可用作色谱柱过滤器,用于快速吸附和分离染料。研究结果表明,SDU-CP- 具有出色的选择性吸附性能,在环境和工业应用方面具有巨大潜力。
{"title":"Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework","authors":"Muhammad Riaz, Rakesh Kumar Gupta, Di Sun, Mohammad Azam, Ping Cui","doi":"10.1016/j.cjsc.2024.100427","DOIUrl":"https://doi.org/10.1016/j.cjsc.2024.100427","url":null,"abstract":"The development of effective adsorbent materials for capturing organic dyes and iodine is crucial to reduce the environmental impact and ensure human health. In this context, a two-dimensional (2D) Co-based metal-organic framework SDU-CP- was rationally designed with 4-(4-carboxyphenyl)-1,2,4-triazole (Hcpt) and 2,4,6-tri(4-pyridinyl)-1,3,5-triazine (tpt) as organic linkers. The SDU-CP- was comprehensively characterized using single-crystal X-ray diffraction analysis, thermogravimetric analysis, fourier transform infrared spectroscopy, raman spectroscopy, powder x-ray diffraction analysis and UV-vis spectroscopy. Molecular docking were conducted to elucidate potential binding sites on SDU-CP- for effective interactions with RhB and ST. Featuring negatively charged surface and trigonal microporous channels, SDU-CP- exhibits excellent adsorption capacities of organic dyes (919.2 ​mg/g for Rhodamine B and 1565 ​mg/g for Safranine T) as well as iodine (563.0 ​mg/g in solution and 1100 ​mg/g in the vapor phase). The exceptional adsorption performance of SDU-CP- for cationic dyes can be ascribed to the electrostatic interaction facilitated by negatively charged zeta potential and the size-matching principle, whereas the pyridine active sites in channels significantly enhance the binding affinity for iodine. Moreover, SDU-CP- can serve as chromatographic column filters for the rapid adsorption and separation of dyes. The results demonstrate the excellent selective adsorption performance of SDU-CP-, highlighting its potential for environmental and industrial applications.","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"8 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite 稳定的层状二维过氧化物中的有序-无序运动引起的相变
IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-29 DOI: 10.1016/j.cjsc.2024.100426
Zhuoer Cai , Yinan Zhang , Xiu-Ni Hua , Baiwang Sun
In recent years, organic-inorganic hybrid materials are widely designed and synthesized as switching materials for temperature response. However, due to the change of molecular arrangement inside the crystal during solid-solid phase transition, the distortion of crystal lattice and the great change of lattice parameters are often caused, which result in a poor repeatability and short life. Thus, designing phase change materials with small lattice changes helps to improve product life. In this article, a novel organic-inorganic hybrid material 3HDMAPAPbBr4 (1, 3HDMAPA is 3-(hydroxydimethylammonio)propan-1-aminium) was successfully synthesized and characterized. For 1, organic cations filled in the van der Waals gap are connected by hydrogen bonds with halogens in the two-dimensional inorganic layer, forming a stable sandwich structure. During the solid-solid phase transition driven by temperature, the changes of inorganic skeleton are relatively small, and the disorder movement of organic cations does not affect the existence of hydrogen bonds, maintaining a relatively stable crystal structure. In addition, electrical property, optical property and crystal structures are analyzed and discussed in detail. We believe that our work will contribute to the development and application of phase change materials in response materials.
近年来,有机-无机杂化材料作为温度响应开关材料被广泛设计和合成。然而,在固-固相变过程中,由于晶体内部分子排列的变化,往往会引起晶格的畸变和晶格参数的巨大变化,从而导致重复性差、寿命短。因此,设计晶格变化小的相变材料有助于提高产品寿命。本文成功合成并表征了一种新型有机无机杂化材料 3HDMAPAPbBr(3HDMAPA 是 3-(羟基二甲基氨基)丙-1-氨基)。其中,范德华间隙中填充的有机阳离子通过氢键与二维无机层中的卤素连接,形成稳定的夹层结构。在温度驱动的固-固相变过程中,无机骨架的变化相对较小,有机阳离子的无序运动不影响氢键的存在,保持了相对稳定的晶体结构。此外,还对电学性质、光学性质和晶体结构进行了详细分析和讨论。我们相信,我们的工作将有助于相变材料在响应材料中的开发和应用。
{"title":"Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite","authors":"Zhuoer Cai ,&nbsp;Yinan Zhang ,&nbsp;Xiu-Ni Hua ,&nbsp;Baiwang Sun","doi":"10.1016/j.cjsc.2024.100426","DOIUrl":"10.1016/j.cjsc.2024.100426","url":null,"abstract":"<div><div>In recent years, organic-inorganic hybrid materials are widely designed and synthesized as switching materials for temperature response. However, due to the change of molecular arrangement inside the crystal during solid-solid phase transition, the distortion of crystal lattice and the great change of lattice parameters are often caused, which result in a poor repeatability and short life. Thus, designing phase change materials with small lattice changes helps to improve product life. In this article, a novel organic-inorganic hybrid material 3HDMAPAPbBr<sub>4</sub> (<strong>1</strong>, 3HDMAPA is 3-(hydroxydimethylammonio)propan-1-aminium) was successfully synthesized and characterized. For <strong>1</strong>, organic cations filled in the van der Waals gap are connected by hydrogen bonds with halogens in the two-dimensional inorganic layer, forming a stable sandwich structure. During the solid-solid phase transition driven by temperature, the changes of inorganic skeleton are relatively small, and the disorder movement of organic cations does not affect the existence of hydrogen bonds, maintaining a relatively stable crystal structure. In addition, electrical property, optical property and crystal structures are analyzed and discussed in detail. We believe that our work will contribute to the development and application of phase change materials in response materials.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 11","pages":"Article 100426"},"PeriodicalIF":5.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facilitating ultra-fast lithium ion diffusion in face-centered cubic oxides via over-stoichiometric face-sharing configurations 通过超全度面共享配置促进面心立方氧化物中的超快锂离子扩散
IF 2.2 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-20 DOI: 10.1016/j.cjsc.2024.100419
Xiaohan Zhang, Bo Xiao
{"title":"Facilitating ultra-fast lithium ion diffusion in face-centered cubic oxides via over-stoichiometric face-sharing configurations","authors":"Xiaohan Zhang, Bo Xiao","doi":"10.1016/j.cjsc.2024.100419","DOIUrl":"https://doi.org/10.1016/j.cjsc.2024.100419","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"3 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters 配体对原子精度纳米铜簇几何结构和催化活性的影响
IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-17 DOI: 10.1016/j.cjsc.2024.100411
Luyao Lu , Chen Zhu , Fei Li , Pu Wang , Xi Kang , Yong Pei , Manzhou Zhu

The ligand effects have been extensively investigated in Au and Ag nanoclusters, while corresponding research efforts focusing on Cu nanoclusters remain relatively insufficient. Such a scarcity could primarily be attributed to the inherent instability of Cu nanoclusters relative to their Au/Ag analogues. In this work, we report the controllable preparation and structural determination of a hydride-containing Cu28 nanocluster with a chemical formula of Cu28H10(SPhpOMe)18(DPPOE)3. The combination of Cu28H10(SPhpOMe)18(DPPOE)3 and previously reported Cu28H10(SPhoMe)18(TPP)3 constructs a structure-correlated cluster pair with comparable structures and properties. Accordingly, the ligand effects in directing the geometric structures and physicochemical properties (including optical absorptions and catalytic activities towards the selected hydrogenation) of copper nanoclusters were analyzed. Overall, this work presents a structure-correlated Cu28 pair that enables the atomic-level understanding of ligand effects on the structures and properties of metal nanoclusters.

配体效应已在金纳米团簇和银纳米团簇中得到了广泛研究,而针对铜纳米团簇的相应研究仍相对不足。造成这种不足的主要原因是,相对于金/银类似物,铜纳米团簇具有固有的不稳定性。在这项工作中,我们报告了含氢化物的 Cu28 纳米簇的可控制备和结构测定,其化学式为 Cu28H10(SPhpOMe)18(DPPOE)3。 Cu28H10(SPhpOMe)18(DPPOE)3 与之前报告的 Cu28H10(SPhoMe)18(TPP)3 的组合构建了结构相关的簇对,具有相似的结构和性质。因此,该研究分析了配体对纳米铜簇几何结构和理化性质(包括光学吸收和对所选氢化反应的催化活性)的影响。总之,这项研究提出了一对结构相关的 Cu28,有助于在原子水平上理解配体对金属纳米簇结构和性质的影响。
{"title":"Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters","authors":"Luyao Lu ,&nbsp;Chen Zhu ,&nbsp;Fei Li ,&nbsp;Pu Wang ,&nbsp;Xi Kang ,&nbsp;Yong Pei ,&nbsp;Manzhou Zhu","doi":"10.1016/j.cjsc.2024.100411","DOIUrl":"10.1016/j.cjsc.2024.100411","url":null,"abstract":"<div><p>The ligand effects have been extensively investigated in Au and Ag nanoclusters, while corresponding research efforts focusing on Cu nanoclusters remain relatively insufficient. Such a scarcity could primarily be attributed to the inherent instability of Cu nanoclusters relative to their Au/Ag analogues. In this work, we report the controllable preparation and structural determination of a hydride-containing Cu<sub>28</sub> nanocluster with a chemical formula of Cu<sub>28</sub>H<sub>10</sub>(SPh<sup><em>p</em></sup>OMe)<sub>18</sub>(DPPOE)<sub>3</sub>. The combination of Cu<sub>28</sub>H<sub>10</sub>(SPh<sup><em>p</em></sup>OMe)<sub>18</sub>(DPPOE)<sub>3</sub> and previously reported Cu<sub>28</sub>H<sub>10</sub>(SPh<sup><em>o</em></sup>Me)<sub>18</sub>(TPP)<sub>3</sub> constructs a structure-correlated cluster pair with comparable structures and properties. Accordingly, the ligand effects in directing the geometric structures and physicochemical properties (including optical absorptions and catalytic activities towards the selected hydrogenation) of copper nanoclusters were analyzed. Overall, this work presents a structure-correlated Cu<sub>28</sub> pair that enables the atomic-level understanding of ligand effects on the structures and properties of metal nanoclusters.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 10","pages":"Article 100411"},"PeriodicalIF":5.9,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A minireview to ketene chemistry in zeolite catalysis 沸石催化中的烯酮化学小览
IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-16 DOI: 10.1016/j.cjsc.2024.100412
Wei Chen, Pieter Cnudde
Ketene and its derivatives, including surface acetate and acylium ion, are pivotal intermediates in zeolite catalysis, facilitating the conversion of C1 molecules into various chemicals. Understanding the formation, transformation, and function of ketene in zeolite catalysis is fundamental for comprehending and enhancing numerous chemical processes. Recent research advances have contributed significantly to a deeper molecular-level comprehension of how ketene affects the catalytic efficacy of zeolites, thereby playing a crucial role in the advancement of more efficient and selective catalytic processes. This minireview aims to provide an overview of ketene chemistry in zeolite catalysis, delineate the reaction network involving ketene, elucidate the role of ketene in zeolite-catalyzed reactions, and summarize the methods for characterizing ketene in zeolite environments.
烯酮及其衍生物(包括表面醋酸盐和酰基离子)是沸石催化过程中的关键中间体,可促进 C1 分子转化为各种化学物质。了解沸石催化过程中酮的形成、转化和功能对于理解和改进众多化学过程至关重要。最近的研究进展极大地促进了对烯酮如何影响沸石催化效能的分子层面的深入理解,从而在推进更高效、更具选择性的催化过程中发挥了至关重要的作用。这篇微型综述旨在概述沸石催化中的烯酮化学,描述涉及烯酮的反应网络,阐明烯酮在沸石催化反应中的作用,并总结沸石环境中烯酮的表征方法。
{"title":"A minireview to ketene chemistry in zeolite catalysis","authors":"Wei Chen,&nbsp;Pieter Cnudde","doi":"10.1016/j.cjsc.2024.100412","DOIUrl":"10.1016/j.cjsc.2024.100412","url":null,"abstract":"<div><div>Ketene and its derivatives, including surface acetate and acylium ion, are pivotal intermediates in zeolite catalysis, facilitating the conversion of C1 molecules into various chemicals. Understanding the formation, transformation, and function of ketene in zeolite catalysis is fundamental for comprehending and enhancing numerous chemical processes. Recent research advances have contributed significantly to a deeper molecular-level comprehension of how ketene affects the catalytic efficacy of zeolites, thereby playing a crucial role in the advancement of more efficient and selective catalytic processes. This minireview aims to provide an overview of ketene chemistry in zeolite catalysis, delineate the reaction network involving ketene, elucidate the role of ketene in zeolite-catalyzed reactions, and summarize the methods for characterizing ketene in zeolite environments.</div></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 11","pages":"Article 100412"},"PeriodicalIF":5.9,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring the configuration of polymer passivators in perovskite solar cells 调整过氧化物太阳能电池中聚合物钝化剂的配置
IF 2.2 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-14 DOI: 10.1016/j.cjsc.2024.100413
Yaohua Li, Qi Cao, Xuanhua Li
{"title":"Tailoring the configuration of polymer passivators in perovskite solar cells","authors":"Yaohua Li, Qi Cao, Xuanhua Li","doi":"10.1016/j.cjsc.2024.100413","DOIUrl":"https://doi.org/10.1016/j.cjsc.2024.100413","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"29 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules 合理设计金属-金属氢氧化物界面,实现生物质衍生平台分子的高效电催化氧化
IF 2.2 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-08-14 DOI: 10.1016/j.cjsc.2024.100418
Yuchen Wang, Zhenhao Xu, Kai Yan
{"title":"Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules","authors":"Yuchen Wang, Zhenhao Xu, Kai Yan","doi":"10.1016/j.cjsc.2024.100418","DOIUrl":"https://doi.org/10.1016/j.cjsc.2024.100418","url":null,"abstract":"","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"20 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
结构化学
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1