IDS-Anta: An open-source code with a defense mechanism to detect adversarial attacks for intrusion detection system

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Impacts Pub Date : 2024-05-17 DOI:10.1016/j.simpa.2024.100664
Kousik Barik , Sanjay Misra
{"title":"IDS-Anta: An open-source code with a defense mechanism to detect adversarial attacks for intrusion detection system","authors":"Kousik Barik ,&nbsp;Sanjay Misra","doi":"10.1016/j.simpa.2024.100664","DOIUrl":null,"url":null,"abstract":"<div><p>An intrusion detection system (IDS) is critical in protecting organizations from cyber threats. The susceptibility of Machine Learning and Deep Learning-based IDSs against adversarial attacks arises from malicious actors’ deliberate construction of adversarial samples. This study proposes a Python-based open-source code repository named IDS-Anta with a robust defense​ mechanism to identify adversarial attacks without compromising IDS performance. It uses Multi-Armed Bandits with Thomson Sampling, Ant Colony Optimization (ACO), and adversarial attack generation methods and is validated using three public benchmark datasets. This code repository can be readily applied and replicated on IDS datasets against adversarial attacks.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"21 ","pages":"Article 100664"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000526/pdfft?md5=aacd52378832dbdb16f9a40062336eeb&pid=1-s2.0-S2665963824000526-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

An intrusion detection system (IDS) is critical in protecting organizations from cyber threats. The susceptibility of Machine Learning and Deep Learning-based IDSs against adversarial attacks arises from malicious actors’ deliberate construction of adversarial samples. This study proposes a Python-based open-source code repository named IDS-Anta with a robust defense​ mechanism to identify adversarial attacks without compromising IDS performance. It uses Multi-Armed Bandits with Thomson Sampling, Ant Colony Optimization (ACO), and adversarial attack generation methods and is validated using three public benchmark datasets. This code repository can be readily applied and replicated on IDS datasets against adversarial attacks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IDS-Anta:带有防御机制的开源代码,用于检测入侵检测系统的对抗性攻击
入侵检测系统(IDS)对于保护组织免受网络威胁至关重要。基于机器学习和深度学习的 IDS 易受对抗性攻击,原因在于恶意行为者故意构建对抗性样本。本研究提出了一个基于 Python 的开源代码库,名为 IDS-Anta,它具有强大的防御机制,可在不影响 IDS 性能的情况下识别对抗性攻击。它采用多臂匪徒与汤姆逊采样、蚁群优化(ACO)和对抗性攻击生成方法,并使用三个公共基准数据集进行了验证。该代码库可在 IDS 数据集上随时应用和复制,以抵御对抗性攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
期刊最新文献
KNNOR-Reg: A python package for oversampling in imbalanced regression pff-oc: A space–time phase-field fracture optimal control framework Synthetic dataset generation system for vehicle detection Multi-browser VE: Enhancing internet browsing experience through virtual reality DeepPack3D: A Python package for online 3D bin packing optimization by deep reinforcement learning and constructive heuristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1