{"title":"Identification of phytase producing bacteria from acidifying Tithonia diversifolia: Potential for ruminant feed development","authors":"Roni Pazla , Gusri Yanti , Novirman Jamarun , Mardiati Zain , Hera Dwi Triani , Ezi Masdia Putri , Anifah Srifani","doi":"10.1016/j.sjbs.2024.104006","DOIUrl":null,"url":null,"abstract":"<div><p>Phytate content in feed ingredients can negatively impact digestibility and palatability. To address this issue, it is necessary to study microbes capable of breaking down phytate content. This study aimed to isolate and characterize phytase-producing bacteria from decaying materials rich in phytic acid. The research was conducted in several stages. The first stage involved isolating phytase-producing bacteria from the acidification of <em>Tithonia diversifolia</em> using growth media containing Na-phytate. Bacterial isolates that produced clear zones were then tested for their activity and ability to produce several enzymes, specifically phytase, cellulase, and protease. The next step was to test the morphological characteristics of the bacterial isolate. The final stage of bacterial identification consisted of DNA isolation, followed by PCR amplification of the 16S rRNA gene, DNA sequence homology analysis, and construction of a phylogenetic tree. Based on research, three isolates were found to produce clear phytase zones: isolates R5 (20.3 mm), R7 (16.1 mm) and R8 (31.7 mm). All isolates were able to produce the enzymes phytase (5.45–6.54 U/ml), cellulase (2.60–2.92 U/ml), and protease (22.2–23.4 U/ml). Metagenomic testing identified isolate R7 and R8 as <em>Alcaligenes faecalis</em> and isolate R5 as <em>Achromobacter xylosoxidans</em>. The isolation and characterization of phytase-producing bacteria from <em>Tithonia diversifolia</em> acidification resulted in the identification of two promising candidates that can be applied as sources of phytase producers. Phytase-producing bacteria can be utilized to improve digestibility and palatability in animal feed.</p></div>","PeriodicalId":21540,"journal":{"name":"Saudi Journal of Biological Sciences","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319562X24000846/pdfft?md5=9d62d7ad9435fb0c94bccecd81175a2e&pid=1-s2.0-S1319562X24000846-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Saudi Journal of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319562X24000846","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Phytate content in feed ingredients can negatively impact digestibility and palatability. To address this issue, it is necessary to study microbes capable of breaking down phytate content. This study aimed to isolate and characterize phytase-producing bacteria from decaying materials rich in phytic acid. The research was conducted in several stages. The first stage involved isolating phytase-producing bacteria from the acidification of Tithonia diversifolia using growth media containing Na-phytate. Bacterial isolates that produced clear zones were then tested for their activity and ability to produce several enzymes, specifically phytase, cellulase, and protease. The next step was to test the morphological characteristics of the bacterial isolate. The final stage of bacterial identification consisted of DNA isolation, followed by PCR amplification of the 16S rRNA gene, DNA sequence homology analysis, and construction of a phylogenetic tree. Based on research, three isolates were found to produce clear phytase zones: isolates R5 (20.3 mm), R7 (16.1 mm) and R8 (31.7 mm). All isolates were able to produce the enzymes phytase (5.45–6.54 U/ml), cellulase (2.60–2.92 U/ml), and protease (22.2–23.4 U/ml). Metagenomic testing identified isolate R7 and R8 as Alcaligenes faecalis and isolate R5 as Achromobacter xylosoxidans. The isolation and characterization of phytase-producing bacteria from Tithonia diversifolia acidification resulted in the identification of two promising candidates that can be applied as sources of phytase producers. Phytase-producing bacteria can be utilized to improve digestibility and palatability in animal feed.
期刊介绍:
Saudi Journal of Biological Sciences is an English language, peer-reviewed scholarly publication in the area of biological sciences. Saudi Journal of Biological Sciences publishes original papers, reviews and short communications on, but not limited to:
• Biology, Ecology and Ecosystems, Environmental and Biodiversity
• Conservation
• Microbiology
• Physiology
• Genetics and Epidemiology
Saudi Journal of Biological Sciences is the official publication of the Saudi Society for Biological Sciences and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.