Mechanical and thermal processing of wire-arc additively deposited stainless steel

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL Cirp Annals-Manufacturing Technology Pub Date : 2024-01-01 DOI:10.1016/j.cirp.2024.04.068
{"title":"Mechanical and thermal processing of wire-arc additively deposited stainless steel","authors":"","doi":"10.1016/j.cirp.2024.04.068","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanical and thermal processing of wire-arc additively deposited stainless steel is investigated with the purpose of improving its microstructure, surface morphology, formability, and stress response. Microscopy helps identifying the processing conditions that permit full recrystallization of the as-built columnar microstructure. Combination with strain loading paths, topography and fractography in tensile tests show that mechanical processing consisting of 20 % thickness reduction followed by annealing at 1100 °C under 4 h eliminates anisotropy and increases the fracture forming limits by 30 %. The work is a step forward to consolidate the hybridization of wire-arc additive manufacturing with metal forming as an alternative to conventional manufacturing.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 201-204"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0007850624000829/pdfft?md5=f8f1842d9cf776fb480170b6af5b7e63&pid=1-s2.0-S0007850624000829-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000829","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical and thermal processing of wire-arc additively deposited stainless steel is investigated with the purpose of improving its microstructure, surface morphology, formability, and stress response. Microscopy helps identifying the processing conditions that permit full recrystallization of the as-built columnar microstructure. Combination with strain loading paths, topography and fractography in tensile tests show that mechanical processing consisting of 20 % thickness reduction followed by annealing at 1100 °C under 4 h eliminates anisotropy and increases the fracture forming limits by 30 %. The work is a step forward to consolidate the hybridization of wire-arc additive manufacturing with metal forming as an alternative to conventional manufacturing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线弧加沉积不锈钢的机械和热加工
为了改善不锈钢的微观结构、表面形态、成型性和应力响应,研究了线弧添加沉积不锈钢的机械和热加工工艺。显微镜有助于确定加工条件,从而使已形成的柱状微观结构得以充分再结晶。结合拉伸试验中的应变加载路径、形貌和断裂图显示,机械加工包括减薄 20%的厚度,然后在 1100 °C 下退火 4 小时,可消除各向异性,并将断裂成形极限提高 30%。这项工作为巩固线弧快速成型制造与金属成型的混合,以替代传统制造迈出了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
期刊最新文献
Interfacial characteristics in multi-material laser powder bed fusion of CuZr/316L stainless steel Dynamic characterization and control of a back-support exoskeleton 3D-printed cycloidal actuator Throughput scaling and thermomechanical behaviour in multiplexed fused filament fabrication Generative AI and neural networks towards advanced robot cognition Precision optimized process design for highly repeatable handling with articulated industrial robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1