{"title":"Microbial upcycling of food waste using anaerobic digestion for energy and single cell protein production","authors":"Ellen Piercy , Peter R Ellis , Miao Guo","doi":"10.1016/j.cofs.2024.101173","DOIUrl":null,"url":null,"abstract":"<div><p>Food waste represents a growing global crisis equivalent to ∼1.3 billion tonnes/year. This review provides an overview of the potential of food waste as a carbon source for microbial upcycling using anaerobic digestion (AD) for bioenergy coupled with single cell protein (SCP) production. We estimate biogas potential from food waste to be sufficient to generate electricity for 26,500 UK households. Additionally, the concept of mixed communities is considered as an alternative to traditional pure culture fermentation for SCP, and a literature review of 82 genera for SCP from food waste and biogas is presented. Improvements in the understanding of microbial community structure and function are still required to improve reactor performance. Future research should focus on providing insight of the AD microbiome, considering the role of syntrophic relationships in reactor stability, alongside integrated whole systems sustainability assessment of microbial upcycling technologies.</p></div>","PeriodicalId":54291,"journal":{"name":"Current Opinion in Food Science","volume":"57 ","pages":"Article 101173"},"PeriodicalIF":8.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214799324000511/pdfft?md5=86217a2518313f7ea526177be7a9e0e3&pid=1-s2.0-S2214799324000511-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214799324000511","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Food waste represents a growing global crisis equivalent to ∼1.3 billion tonnes/year. This review provides an overview of the potential of food waste as a carbon source for microbial upcycling using anaerobic digestion (AD) for bioenergy coupled with single cell protein (SCP) production. We estimate biogas potential from food waste to be sufficient to generate electricity for 26,500 UK households. Additionally, the concept of mixed communities is considered as an alternative to traditional pure culture fermentation for SCP, and a literature review of 82 genera for SCP from food waste and biogas is presented. Improvements in the understanding of microbial community structure and function are still required to improve reactor performance. Future research should focus on providing insight of the AD microbiome, considering the role of syntrophic relationships in reactor stability, alongside integrated whole systems sustainability assessment of microbial upcycling technologies.
期刊介绍:
Current Opinion in Food Science specifically provides expert views on current advances in food science in a clear and readable format. It also evaluates the most noteworthy papers from original publications, annotated by experts.
Key Features:
Expert Views on Current Advances: Clear and readable insights from experts in the field regarding current advances in food science.
Evaluation of Noteworthy Papers: Annotated evaluations of the most interesting papers from the extensive array of original publications.
Themed Sections: The subject of food science is divided into themed sections, each reviewed once a year.