Predictive model for the growth of Shiga toxin-producing Escherichia coli in Minas Frescal cheese

IF 3 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Microbial Risk Analysis Pub Date : 2024-05-17 DOI:10.1016/j.mran.2024.100308
Iuri L.S. Rosario , Arthur Kael R. Pia , Bruna Samara S. Rekowsky , Susana O. Elias , Tiago B. Noronha , Rafael Emilio G. Cuello , Carla P. Vieira , Marion P. Costa , Carlos A. Conte-Junior
{"title":"Predictive model for the growth of Shiga toxin-producing Escherichia coli in Minas Frescal cheese","authors":"Iuri L.S. Rosario ,&nbsp;Arthur Kael R. Pia ,&nbsp;Bruna Samara S. Rekowsky ,&nbsp;Susana O. Elias ,&nbsp;Tiago B. Noronha ,&nbsp;Rafael Emilio G. Cuello ,&nbsp;Carla P. Vieira ,&nbsp;Marion P. Costa ,&nbsp;Carlos A. Conte-Junior","doi":"10.1016/j.mran.2024.100308","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to develop and evaluate a predictive model for Shiga toxin-producing <em>Escherichia coli</em> (STEC) growth on Minas Frescal cheese across varied temperature conditions. A pool of five STEC strains (3–4 log CFU/g) was inoculated onto 10 g Minas Frescal cheese portions (%moisture = 68.30 ± 0.47,%fat in dry basis = 26.55 ± 0.37, pH = 6.86 ± 0.02) stored at isothermal conditions (4, 8, 15, 25, 37, and 42 °C). STEC concentrations increased at 8 °C and above, persisting throughout the 504-hour study period at 4 °C, showing minimal cell loss. The growth curves were fitted with the primary model of Baranyi and Roberts using Combase DMFit, showcasing robust alignment between predicted and experimental data (R<sup>2</sup> ≥ 0.98). Further, the µ<sub>max</sub> and λ values were fitted as a function of temperature to modified Ratkowsky equations, resulting in R<sup>2</sup> of 0.99 and 0.96, and RMSE of 0.03 and 0.08, respectively, for the secondary models. Model validation was performed under isothermal conditions at 20 and 30 °C. The Ratkowsky equations can reliably predict STEC growth rate and lag phase in Minas Frescal cheese at diverse temperatures (8 to 42 °C), evidenced by accuracy and bias factors of 1.06 and 1.06. These findings offer insights into cold chain management for STEC control during Minas Frescal cheese production, distribution, and storage, emphasizing the need for robust post-pasteurization manufacturing practices to prevent STEC survival even at lower temperatures.</p></div>","PeriodicalId":48593,"journal":{"name":"Microbial Risk Analysis","volume":"27 ","pages":"Article 100308"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Risk Analysis","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352352224000197","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to develop and evaluate a predictive model for Shiga toxin-producing Escherichia coli (STEC) growth on Minas Frescal cheese across varied temperature conditions. A pool of five STEC strains (3–4 log CFU/g) was inoculated onto 10 g Minas Frescal cheese portions (%moisture = 68.30 ± 0.47,%fat in dry basis = 26.55 ± 0.37, pH = 6.86 ± 0.02) stored at isothermal conditions (4, 8, 15, 25, 37, and 42 °C). STEC concentrations increased at 8 °C and above, persisting throughout the 504-hour study period at 4 °C, showing minimal cell loss. The growth curves were fitted with the primary model of Baranyi and Roberts using Combase DMFit, showcasing robust alignment between predicted and experimental data (R2 ≥ 0.98). Further, the µmax and λ values were fitted as a function of temperature to modified Ratkowsky equations, resulting in R2 of 0.99 and 0.96, and RMSE of 0.03 and 0.08, respectively, for the secondary models. Model validation was performed under isothermal conditions at 20 and 30 °C. The Ratkowsky equations can reliably predict STEC growth rate and lag phase in Minas Frescal cheese at diverse temperatures (8 to 42 °C), evidenced by accuracy and bias factors of 1.06 and 1.06. These findings offer insights into cold chain management for STEC control during Minas Frescal cheese production, distribution, and storage, emphasizing the need for robust post-pasteurization manufacturing practices to prevent STEC survival even at lower temperatures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
米纳斯弗雷斯卡尔奶酪中产志贺毒素大肠杆菌生长的预测模型
本研究旨在开发和评估一个预测模型,用于预测产志贺毒素大肠杆菌(STEC)在不同温度条件下在米纳斯弗雷斯卡尔奶酪上的生长情况。在等温条件(4、8、15、25、37 和 42 °C)下储存的 10 克 Minas Frescal 奶酪(水分百分比 = 68.30 ± 0.47,干基脂肪百分比 = 26.55 ± 0.37,pH = 6.86 ± 0.02)上接种了五株 STEC 菌株(3-4 log CFU/g)。STEC 的浓度在 8 °C及以上温度条件下增加,在 4 °C条件下的 504 小时研究期间持续增加,细胞损失极少。使用 Combase DMFit 对生长曲线与 Baranyi 和 Roberts 的主要模型进行了拟合,结果表明预测数据与实验数据非常吻合(R2 ≥ 0.98)。此外,将 µmax 和 λ 值作为温度的函数与修正的 Ratkowsky 方程进行拟合,结果二级模型的 R2 分别为 0.99 和 0.96,RMSE 分别为 0.03 和 0.08。模型验证是在 20 和 30 °C 等温条件下进行的。Ratkowsky 方程可以可靠地预测米纳斯弗雷斯卡尔奶酪中 STEC 在不同温度(8 至 42 °C)下的生长速度和滞后期,准确度和偏差系数分别为 1.06 和 1.06。这些发现为米纳斯弗雷斯卡尔奶酪生产、分销和储存过程中控制 STEC 的冷链管理提供了启示,强调了巴氏杀菌后生产实践的必要性,以防止 STEC 在较低温度下存活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Risk Analysis
Microbial Risk Analysis Medicine-Microbiology (medical)
CiteScore
5.70
自引率
7.10%
发文量
28
审稿时长
52 days
期刊介绍: The journal Microbial Risk Analysis accepts articles dealing with the study of risk analysis applied to microbial hazards. Manuscripts should at least cover any of the components of risk assessment (risk characterization, exposure assessment, etc.), risk management and/or risk communication in any microbiology field (clinical, environmental, food, veterinary, etc.). This journal also accepts article dealing with predictive microbiology, quantitative microbial ecology, mathematical modeling, risk studies applied to microbial ecology, quantitative microbiology for epidemiological studies, statistical methods applied to microbiology, and laws and regulatory policies aimed at lessening the risk of microbial hazards. Work focusing on risk studies of viruses, parasites, microbial toxins, antimicrobial resistant organisms, genetically modified organisms (GMOs), and recombinant DNA products are also acceptable.
期刊最新文献
Editorial Board Corrigendum to “Spatial risk assessment of ovine Scrapie in Brazil” [Microbial Risk Analysis 25 (2023) 100282] Quantitative microbial risk assessment of antibiotic-resistant Salmonella enterica contaminating hydroponic leafy vegetables Assessing urban street food safety among youth: The impact of road dust on potential microbial contamination risks to student health Measuring transboundary disease spread - ASF in wild boars straddling Piedmont and Liguria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1