Explore the Impact of Surfactant Type on the Stability and Separation Efficiency of Oil–Water Emulsions of Real Wastewater from Al-Basrah Crude Oil Using Microbubble Air Flotation

IF 1.3 Q4 ENGINEERING, ENVIRONMENTAL Journal of Ecological Engineering Pub Date : 2024-05-01 DOI:10.12911/22998993/185307
A. Al-yaqoobi, Sumaya L. Al-dulaimi, R. Salman
{"title":"Explore the Impact of Surfactant Type on the Stability and Separation Efficiency of Oil–Water Emulsions of Real Wastewater from Al-Basrah Crude Oil Using Microbubble Air Flotation","authors":"A. Al-yaqoobi, Sumaya L. Al-dulaimi, R. Salman","doi":"10.12911/22998993/185307","DOIUrl":null,"url":null,"abstract":"Among several separation processes, the air flotation distinguish as remarkably high potential separation process re - lated to its high separation efficiency and throughput, energy-efficient, simple process, cost-effective, applicable to a wide range of oily wastewater and no by-products. The current study aimed to investigate the effect of the type and concentration of surfactant on the stability of oil-water emulsion and efficiency of the separation process. For this purpose, three types of surfactant where used (anionic SDS, mixed nonionic Span 85/Tween 80, and cationic CTAB). The results demonstrated that the Span 85/Tween 80 surfactant has the best stability, and it increases with the surfactant concentration augmentation. The removal efficiency with CTAB surfactant reached to approximately 95% at concen - tration of 0.3%, and decreased by increasing the surfactant concentration. The mean diameter of bubbles generated in emulsion with CTAB surfactant was 71 µm, which was lower than that obtained with the other two surfactants.","PeriodicalId":15652,"journal":{"name":"Journal of Ecological Engineering","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12911/22998993/185307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Among several separation processes, the air flotation distinguish as remarkably high potential separation process re - lated to its high separation efficiency and throughput, energy-efficient, simple process, cost-effective, applicable to a wide range of oily wastewater and no by-products. The current study aimed to investigate the effect of the type and concentration of surfactant on the stability of oil-water emulsion and efficiency of the separation process. For this purpose, three types of surfactant where used (anionic SDS, mixed nonionic Span 85/Tween 80, and cationic CTAB). The results demonstrated that the Span 85/Tween 80 surfactant has the best stability, and it increases with the surfactant concentration augmentation. The removal efficiency with CTAB surfactant reached to approximately 95% at concen - tration of 0.3%, and decreased by increasing the surfactant concentration. The mean diameter of bubbles generated in emulsion with CTAB surfactant was 71 µm, which was lower than that obtained with the other two surfactants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用微气泡气浮法探索表面活性剂类型对巴斯拉原油实际废水油水乳化液稳定性和分离效率的影响
在几种分离工艺中,气浮以其分离效率高、处理量大、高效节能、工艺简单、成本效益高、适用于多种含油废水且无副产物等优点,成为一种极具潜力的分离工艺。本研究旨在探讨表面活性剂的类型和浓度对油水乳化液稳定性和分离过程效率的影响。为此使用了三种类型的表面活性剂(阴离子 SDS、混合非离子 Span 85/Tween 80 和阳离子 CTAB)。结果表明,Span 85/Tween 80 表面活性剂的稳定性最好,而且随着表面活性剂浓度的增加,稳定性也会增加。浓度为 0.3% 时,CTAB 表面活性剂的去除率约为 95%,随着表面活性剂浓度的增加,去除率下降。在使用 CTAB 表面活性剂的乳液中产生的气泡的平均直径为 71 µm,低于使用其他两种表面活性剂所产生的气泡直径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Ecological Engineering
Journal of Ecological Engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
2.60
自引率
15.40%
发文量
379
审稿时长
8 weeks
期刊介绍: - Industrial and municipal waste management - Pro-ecological technologies and products - Energy-saving technologies - Environmental landscaping - Environmental monitoring - Climate change in the environment - Sustainable development - Processing and usage of mineral resources - Recovery of valuable materials and fuels - Surface water and groundwater management - Water and wastewater treatment - Smog and air pollution prevention - Protection and reclamation of soils - Reclamation and revitalization of degraded areas - Heavy metals in the environment - Renewable energy technologies - Environmental protection of rural areas - Restoration and protection of urban environment - Prevention of noise in the environment - Environmental life-cycle assessment (LCA) - Simulations and computer modeling for the environment
期刊最新文献
The Influence of Drip Irrigation on Water Efficiency in Pear Cultivation Natural and Climatic Transformation of the Kakhovka Reservoir after the Destruction of the Dam Properties of Organic Matter in Composts Based on Sewage Sludge A Simulation of the Impact of Biodiesel Blends on Performance Parameters in Compression Ignition Engine Harnessing the Mineral Fertilization Regimes for Bolstering Biomass Productivity and Nutritional Quality of Cowpea (Vigna unguiculata L. Walp)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1